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We consider several variants of the job shop problem that is a fundamental and classical problem in schedul-
ing. The currently best approximation algorithms have worse than logarithmic performance guarantee, but
the only previously known inapproximability result says that it is NP-hard to approximate job shops within
a factor less than 5/4. Closing this big approximability gap is a well-known and long-standing open problem.

This article closes many gaps in our understanding of the hardness of this problem and answers several
open questions in the literature. It is shown the first nonconstant inapproximability result that almost
matches the best-known approximation algorithm for acyclic job shops. The same bounds hold for the gen-
eral version of flow shops, where jobs are not required to be processed on each machine. Similar inapprox-
imability results are obtained when the objective is to minimize the sum of completion times. It is also
shown that the problem with two machines and the preemptive variant with three machines have no PTAS.
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1. INTRODUCTION

We consider the classical job shop scheduling problem together with the more re-
stricted flow shop problem. In the job shop problem we have a set of n jobs that must
be processed on a given set M of m machines. Each job j consists of a chain of μ j
operations O1 j, O2 j, . . . , Oμ j j. Operation Oij must be processed during pij time units
without interruption on machine mij ∈ M. A feasible schedule is one in which each
operation is scheduled only after all its preceding operations have been completed,
and each machine processes at most one operation at a time. For any given schedule,
let C j be the completion time of the last operation of job j. We consider the natural
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20:2 M. Mastrolilli and O. Svensson

Fig. 1. Example of scheduling instances with three machines and two jobs depicted in light and dark gray.
(a) Job shop instance – jobs may have several operations on each machine. (b) Acyclic job shop instance –
a job has at most one operation per machine. (c) Flow shop instance – each job has exactly one operation
per machine and all the jobs are processed on the machines in the same order. (d) Generalized flow shop
instance – jobs have at most one operation per machine and jobs are processed on the machines in the same
order.

and typically considered objectives of minimizing the makespan Cmax = max j C j, and
minimizing the sum of weighted completion times

∑
w jC j. The goal is to find a fea-

sible schedule which minimizes the considered objective function. In the notation of
Graham et al. [1979], this problem is denoted as J||γ , where γ denotes the objective
function to be minimized.

In the flow shop scheduling problem (F||γ ), each job has exactly one operation per
machine, and all jobs go through all the machines in the same order. A natural gener-
alization of the flow shop problem is to not require jobs to be processed on all machines,
that is, a job still requests the machines in compliance with some fixed order but may
not require to be processed on some of them. We will refer to this more general ver-
sion as generalized flow shops or flow shops with jumps (F| jumps|γ ). Generalized flow
shop scheduling (and thus flow shop) is a special case of acyclic job shop scheduling,
which only requires that within each job all operations are performed on different ma-
chines, which in turn is a special case of job shop scheduling. See Figure 1 for example
instances of the addressed problems.

1.1. Literature Review

Job and flow shops have long been identified as having a number of important practical
applications and have been widely studied since the late 50’s (the reader is referred to
the survey papers of Lawler et al. [1993] and of Chen et al. [1998]). To find a schedule
that minimizes the makespan, or one that minimizes the sum of completion times, was
proved to be strongly NP-hard for flow shops (and thus job shops) in the 70’s, even for
severely restricted instances (see, e.g., Chen et al. [1998]).

From then, many approximation methods have been proposed.1 Since the quality
of an approximation algorithm is measured by comparing the returned solution value
with a polynomial time computable lower bound on the optimal value, the latter is very
important. For a given instance, let C∗

max denote the minimum makespan taken over

1A ρ-approximation algorithm is a polynomial time algorithm that is guaranteed to return a solution that
is within ρ times the optimal value.
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all possible feasible schedules. If D denotes the length of the longest job (the dilation),
and C denotes the time units requested by all jobs on the most loaded machine (the
congestion), then lb = max[C, D] is a known trivial lower bound on C∗

max. There is no
known significantly stronger lower bound on C∗

max, and all the proposed approximation
algorithms for flow shops, acyclic job shops, job shops, and the more constrained case
of permutation flow shops have been analyzed with respect to this lower bound (see,
e.g., Feige and Scheideler [2002], Goldberg et al. [2001], Leighton et al. [1994, 1999],
Nagarajan and Sviridenko [2008], and Shmoys et al. [1994]).

Even though the trivial lower bound might seem weak, a surprising result by
Leighton et al. [1994] says that for acyclic job shops, if all operations are of unit
length, then C∗

max = �(lb). If we allow operations of any length, then Feige and
Scheideler [2002] showed that C∗

max = O(lb · log lb log log lb) for acyclic job shops. They
also showed their analysis to be nearly tight by providing acyclic job shop instances
with C∗

max = �(lb · log lb/ log log lb). The proofs of the upper bounds in Feige and
Scheideler [2002], and Leighton et al. [1994] are nonconstructive and make repeated
use of (a general version) of the Lovàsz local lemma. Algorithmic versions of the Lovàsz
local lemma [Beck 1991] and the general version [Czumaj and Scheideler 2000], have
later been used to obtain constructive upper bounds yielding a constant approxima-
tion algorithm for unit time acyclic job shops [Leighton et al. 1999] and an O(log lb1+ε)-
approximation algorithm for acyclic job shops [Czumaj and Scheideler 2000], where
ε > 0 is any constant.

Feige and Scheideler’s [2002] upper bound for acyclic job shops is also the best upper
bound for the special case of flow shops. As flow shops have more structure than acyclic
job shops and no flow shop instances with C∗

max = ω(lb) were known, one could hope for
a significantly better upper bound for flow shops. The existence of such a bound was
raised as an open question in Feige and Scheideler [2002]. The strength of the lower
bound lb is better understood for the related permutation flow shop problem, that is
a flow shop problem with the additional constraint that each machine processes all
the jobs in the same order. Potts et al. [1991] gave a family of permutation flow shop
instances with C∗

max = �(lb · √
min[m, n]). This lower bound was recently shown to be

tight, by Nagarajan and Sviridenko [2008], who gave an approximation algorithm that
returns a permutation schedule with makespan O(lb · √min[m, n]).

The best approximation algorithms known for general J||Cmax are an approximation
algorithm by Shmoys et al. [1994] with performance guarantee O((log lb)2/ log log lb);
later improved by a log log lb factor by Goldberg et al. [2001].

When preemption is allowed, every operation can be temporarily interrupted and
resumed later without any penalty. For any ε > 0, it is well known that with only
ε loss in the approximation factor, the preemptive job shop scheduling problem is
equivalent to the nonpreemptive job shop scheduling problem with unit processing
times (see, e.g., Bansal et al. [2006]). For acyclic job shop and flow shop scheduling
with preemption, the best-known result is due to Feige and Scheideler [2002] who
showed that there always exists a preemptive schedule within a O(log log lb) factor
of lb. For the general preemptive job shop problem, Bansal et al. [2006] showed an
O(log m/ log log m)-randomized approximation algorithm, and a (2 + ε)-approximation
for a constant number of machines. Bansal et al. [2006] also consider the preemp-
tive two-machine job shop problem (denoted as J2|pmtn|Cmax) and present an approx-
imation algorithm with ratio of about 1.442 which improves the previous ratio of 1.5
[Anderson et al. 2001; Sevastianov and Woeginger 1998].

Whether these algorithms for J||Cmax and F ||Cmax are tight or even nearly tight
is a long-standing open problem (see “Open problems 6 and 7” in Schuurman and
Woeginger [1999]). The only known inapproximability result is due to Williamson
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et al. [1997], and states that when the number of machines and jobs are part of the
input, it is NP-hard to approximate F ||Cmax with unit time operations and at most
three operations per job, within a ratio better than 5/4.

The situation is similar for the weighted sum of completions times objective.
Queyranne and Sviridenko [2002] showed that an approximation algorithm for the
above mentioned problems that produces a schedule with makespan a factor O(ρ) away
from the lower bound lb can be used to obtain an O(ρ)-approximation algorithms for
other objectives, including the sum of weighted completion times. As a result, the pre-
viously mentioned approximation guarantees for the makespan criteria also hold for
the sum of weighted completion times objective. The only known inapproximability re-
sult is by Hoogeveen et al. [2001], who showed that F|| ∑C j is NP-hard to approximate
within a ratio better than 1 + ε for some small ε > 0.

Another open problem [Schuurman and Woeginger 1999] is to understand whether
there is a PTAS for the general job shop problem with a constant number of machines.
For those instances where the number of machines and the number of operations per
job are constant, Jansen et al. [2003] gave a PTAS for the makespan criteria (see also
Fishkin et al. [2008]). A similar result was obtained by Fishkin et al. [2003] for the
weighted sum of completion times objective.

1.2. Results and Overview of Techniques

The main result of the this article gives an answer to ”Open Problem 7” by Schuur-
man and Woeginger [1999]) by showing that it is NP-hard to approximate the gener-
alized flow shop problem (and therefore job shops) within any constant factor. Under
a stronger but widely believed assumption, the provided hardness result matches the
best-known approximation algorithm for acyclic job shops [Feige and Scheideler 2002].
Similar inapproximability results are obtained when the objective is to minimize the
sum of completion times.

Moreover, we solve negatively a question raised by Feige and Scheideler [2002], by
showing that the optimal solution for flow shops can be a logarithmic factor away from
lb . This implies that to obtain a better approximation guarantee for flow shops it
is necessary to improve the used lower bound on the optimal makespan. When the
number of machines and the number of operations per job are assumed to be constant
the job shop problem is known to admit a PTAS [Jansen et al. 2003]. This article shows
that both these restrictions are necessary to obtain a PTAS. Indeed we prove that
the general job shop problem with two machines (denoted as J2||Cmax) has no PTAS.
The same limitation applies to the preemptive version with three machines (denoted
as J3|pmtn|Cmax). The latter answers negatively an open question raised by Bansal
et al. [2006]. A more detailed presentation of the results is given in the following.

1.2.1. Generalized Flow Shops. Feige and Scheideler [2002] showed their analysis
to be essentially tight for acyclic job shops. As flow shops are more structured than
acyclic job shops, they raised as an open question whether the upper bound for flow
shop scheduling can be improved significantly. Our first result resolves this question
negatively.

THEOREM 1.1. There exist flow shop instances with optimal makespan

�

(
lb · log lb

log log lb

)
.

PROOF OVERVIEW. The construction of job shop instances with “large” makespan is
presented in Section 2.1 and serves as a good starting point for reading Section 2.2
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where the more complex construction of flow shop instances with “large” makespan is
presented.

The job shop construction closely follows the construction in Feige and Scheideler
[2002] with the main difference being that we do not require all operations of a job to
be of the same length, which leads to a slightly better analysis. The main idea is to
introduce jobs of different “frequencies”, with the property that two jobs of different
frequencies essentially cannot be processed at the same time in any feasible schedule.
Hence, a job shop instance with d jobs of different frequencies, all of them of length D,
has optimal makespan �(d · D). Moreover, the construction satisfies lb = C = D = 3d

and it follows that the job shop instance has optimal makespan �(d · 3d), which can be
written as �(lb · log lb).

The construction of flow shop instances with “large” makespan is more complicated,
as each job is required to have exactly one operation for every machine, and all jobs
are required to go through all the machines in the same order. The main idea is to
start with the aforementioned job shop construction, which has “very cyclic” jobs, that
is, jobs have many operations on a single machine. The flow shop instance is then
obtained by “copying” the job shop instance several times and instead of having cyclic
jobs we let the ith “long-operation” of a job to be processed by a machine in the ith copy
of the original job shop instance. Finally, we insert additional zero-length operations
to obtain a flow shop instance. By carefully choosing the different frequencies, we can
show that the constructed flow shop instance will have essentially the same optimal
makespan as the job shop instance we started with. The slightly worse bound, �(lb ·
log lb/ log log lb) instead of �(lb·log lb), arises from additional constraints on the design
of frequencies.

If we do not require a job to be processed on all machines, that is, generalized flow
shops, we prove that it is hard to improve the approximation guarantee. Theorem 1.2
shows that generalized flow shops, with the objective to either minimize makespan or
sum of completion times,2 have no constant approximation algorithm unless P = NP.

THEOREM 1.2. For all sufficiently large constants K, it is NP-hard to distinguish
between generalized flow shop instances that have a schedule with makespan 2K · lb
and those that have no solution that schedules more than half of the jobs within
(1/8)K

1
25 (log K) · lb time units. Moreover, this hardness result holds for generalized flow

shop instances with bounded number of operations per job, that only depends on K.

PROOF OVERVIEW. The reduction is from the NP-hard problem of deciding
whether a graph G with degree bounded by a constant 	 can be colored using “few”
colors or has no “large” independent set (see Theorem 1.7). In Section 3.1, we present
a relatively easy reduction to the job shop problem which serves as a good starting
point for reading the more complex reduction for the generalized flow shop problem
presented in Section 3.2. The main idea is as follows. Given a graph G with bounded
degree 	, we construct a generalized flow shop instance S, where all jobs have the
same length D and all machines the same load C = D. Hence, lb = C = D. Instance
S has a set of jobs for each vertex in G. By using jobs of different frequencies, as done
in the gap construction, we have the property that “many” of the jobs corresponding
to adjacent vertices cannot be scheduled in parallel in any feasible schedule. On the
other hand, by letting jobs skip the machines corresponding to nonadjacent vertices,
jobs corresponding to an independent set in G can be scheduled in parallel (their oper-
ations can overlap in time) in a feasible schedule. For the reduction to be polynomial

2Note that Theorem 1.2 implies that for sufficiently large constants K, it is NP-hard to distinguish whether∑
Cj ≤ n · 2K · lb or

∑
Cj ≥ n

2 · (1/8) · K
1

25 (log K) · lb, where n is the number of jobs.
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it is crucial that the number of frequencies is relatively small. However, to ensure
the desired properties, jobs corresponding to adjacent vertices must be of different fre-
quencies. We resolve this by using the fact that G has bounded degree. Since the graph
G has degree of at most 	 we can in polynomial time partition its vertices into 	 + 1
independent sets. As two jobs only need to be assigned different frequencies if they
correspond to adjacent vertices, we only need a constant (	+ 1) number of frequencies.

The analysis follows naturally: a set of jobs corresponding to an independent set can
be scheduled in parallel. Hence, if the graph G can be colored with few, say F, colors
then there is a schedule of S with makespan O(F · lb). Finally, if there is a schedule
where at least half the jobs finish within L · lb time units then jobs corresponding to
at least a fraction �(1/L) of the vertices overlap at some point in the schedule. As the
jobs overlap, they correspond to a fraction �(1/L) of vertices that form an independent
set. It follows that if the graph has no large independent set, then the generalized flow
shop instance has no short schedule.

By making a stronger assumption, we give a hardness result that essentially shows
that the current approximation algorithms for generalized flow shops (and acyclic job
shops), with both makespan and sum of weighted completion times objectives, are
tight.

THEOREM 1.3. Let ε > 0 be an arbitrarily small constant. There is no O
(
(log lb)1−ε

)
-

approximation algorithm for F| jumps|Cmax or F| jumps| ∑ C j, unless NP ⊆
Z TIME(2log nO(1/ε)

).

PROOF OVERVIEW. The construction of the generalized flow shop instance is the
same as in the proof of Theorem 1.2. To obtain the stronger result, we use a stronger
hardness result for graph coloring (see Theorem 1.8). The tricky part is that the graph
no longer has a small bounded degree. We overcome this difficulty by a randomized
process that preserves the desired properties of the graph with an overwhelming prob-
ability (see Lemma 3.1).

For flow shops, the consequences of Theorem 1.1 and Theorem 1.3 are among others
that in order to improve the approximation guarantee, it is necessary to (i) improve
the used lower bound on the optimal makespan and (ii) use the fact that a job needs to
be processed on all machines.

From Theorem 1.2 and Theorem 1.3, we have the following for the more general job
shop problem.

THEOREM 1.4. Job Shops are NP-hard to approximate within any constant and
have no O

(
(log lb)1−ε

)
-approximation algorithm for any ε > 0, unless NP ⊆

Z TIME(2log nO(1/ε)
).

1.2.2. Job Shop with Bounded Number of Machines. In Jansen et al. [2003], a PTAS was
given for the (preemptive) job shop problem, where both the number of machines and
the number of operations per job are assumed to be constant. Our second result shows
that both these restrictions are necessary to obtain a PTAS (that one needs to restrict
the number of machines follows from the work in Williamson et al. [1997]).

THEOREM 1.5. The job shop problem with two machines (J2||Cmax) has no PTAS
unless NP ⊆ DTIME(nO(log n)).

PROOF OVERVIEW. In Section 4.1, we prove the result by presenting a gap-preser-
ving reduction from the independent set problem in cubic graphs, that is, graphs where
all vertices have degree three (see Theorem 1.9).
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Given a cubic graph G we construct an instance S of J2||Cmax as follows. The in-
stance has a “big” job, called jb , whose length will equal the makespan in the complete-
ness case. Its operations are divided into four parts, called the edge-, tail-, slack-, and
remaining-part. There is also a vertex job for each vertex. We again use the technique
of introducing different frequencies of jobs; this time to ensure that, without delaying
job jb , two jobs corresponding to adjacent vertices cannot both complete before the end
of the tail-part of job jb .

The analysis now follows from selecting the lengths of the different parts of jb such
that in the completeness case we can schedule all jobs, corresponding to a “big” inde-
pendent set of G, in parallel with the edge- and tail-part of job jb and the remaining
jobs are scheduled in parallel with the slack- and remaining-part of job jb . In contrast,
in the soundness case, as G has no “big” independent set, we can, without delaying the
schedule, only schedule relatively few jobs in parallel with the edge- and tail-part of
job jb . The remaining jobs, relatively many, will then require more time units than the
total length of the slack- and remaining-part of job jb and it follows that the schedule
will have makespan larger than the length of jb .

The reduction runs in time nO( f ), where f is the number of frequencies. With our
current techniques we need O(log n) frequencies and hence the assumption used in the
statement of Theorem 1.5.

For the general preemptive job shop problem, Bansal et al. [2006] showed a (2 + ε)-
approximation for a constant number of machines. According to Bansal et al. [2006],
it is an an “outstanding open question” to understand whether there is a PTAS for
the general preemptive job shop with a constant number of machines. We solve (nega-
tively) the open question raised in Bansal et al. [2006].

THEOREM 1.6. The preemptive job shop problem with three machines
(J3|pmtn|Cmax) has no PTAS unless NP ⊆ DTIME(nO(log n)).

The proof of Theorem 1.6 is more involved than the proof of Theorem 1.5, but it has
a similar structure. We remark that the approximability of J2|pmtn|Cmax is still open.

1.3. Preliminaries

When considering a schedule, we shall say that two jobs (or operations) overlap or are
scheduled in parallel for t time units if t time units of them are processed at the same
time on different machines. For a given graph G, we let χ(G) and α(G) denote the
chromatic number of G and the size of a maximum independent set of G, respectively.
We shall also denote the maximum degree of graph G by 	(G), where we sometimes
drop G when it is clear from the context.

Our reductions to the job shop problem with unbounded number of machines use re-
sults by Khot [2001], who proved that even though we know that the graph is colorable
using K colors it is NP-hard to find a coloring that uses less than K

1
25 (log K) colors, for

sufficiently large constants K. The result was obtained by presenting a polynomial-
time reduction that takes as input a SAT formula φ together with a sufficiently large
constant K and outputs an n-vertex graph G with degree at most 2K O(log K)

such that
(completeness) if φ is satisfiable then G can be colored using at most K colors and
(soundness) if φ is not satisfiable then G has no independent set containing n/K

1
25 (log K)

vertices (see Section 6 in Khot [2001]). Note that the soundness case implies that any
feasible coloring of the graph uses at least K

1
25 (log K) colors. We let G[c, f ] be the family

of graphs that either can be colored using c colors or have no independent set contain-
ing a fraction f of the vertices. The following theorem (not stated in this form in Khot
[2001]) summarizes the result obtained.
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Fig. 2. An example of the construction with d = 3. The long-operations of jobs of frequency 1, 2 and 3 are
depicted in light, medium, and dark gray, respectively. Job ji has 3i long-operations on machine mi, for
i ∈ {1,2, 3}.

THEOREM 1.7 [KHOT 2001]. For all sufficiently large constants K, it is NP-hard to
decide if a graph in G[K, 1/K

1
25 (log K)] can be colored using K colors or has no indepen-

dent set containing a fraction 1/K
1

25 (log K) of the vertices. Moreover, this hardness result
holds for graphs with degree at most 2K O(log K)

.

By using a stronger assumption, we can let K be a function of the number of vertices.
Again, the stronger statement (not explicitly stated in Khot [2001]) follows from the
soundness analysis.

THEOREM 1.8 [KHOT 2001]. There exists an absolute constant γ > 0 such that, for
all K ≤ 2(log n)γ , there is no polynomial-time algorithm that decides if an n-vertex graph
in G[K, 1/K�(log K)] can be colored using K colors or has no independent set containing
a fraction 1/K�(log K) of the vertices, unless NP ⊆ DTIME(2O(log n)O(1)

).

Our reduction to J2||Cmax uses the following result by Alimonti and Kann [2000]. A
cubic graph is a graph where all vertices have degree three.

THEOREM 1.9 [ALIMONTI AND KANN 2000]. There exist positive constants β, α
with β > α, so that it is NP-hard to distinguish between n-vertex cubic graphs that
have an independent set of size β · n and those that have no independent set of size α · n.

2. JOB AND FLOW SHOP INSTANCES WITH LARGE MAKESPAN

We first exhibit a family of instances of general job shop scheduling for which it is
relatively simple to show that any optimal schedule is of length �(lb · log lb). This
complements3 and builds on the bound by Feige and Scheideler [2002], who showed
the existence of job shop instances with optimal makespan �(lb · log lb/ log log lb).
We then use this construction as a building block in the more complicated flow shop
construction.

2.1. Job Shops with Large Makespan

2.1.1. Construction. For any integer d ≥ 1, consider the job shop instance with d ma-
chines m1, . . . , md and d jobs j1, . . . , jd. We say that job ji has frequency i, which means
that it has 3i so-called long-operations on machine mi, each one of them requires 3d−i

time units. Between any two consecutive long-operations, job ji has short-operations
that require 0 time units on the machines m1, . . . , mi−1. Note that the length of all
jobs and the load on all machines are 3d, which we denote by lb. See Figure 2 for an
example of the construction.

2.1.2. Analysis. Fix an arbitrary feasible schedule of the jobs. We shall show that the
length of the schedule must be �(lb · log lb).

LEMMA 2.1. For i, j : 1 ≤ i < j ≤ d, the number of time units during which both ji
and jj perform operations is at most lb

3 j−i .

3In their construction, all operations of a job have the same length which is not the case for our construction.
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Fig. 3. An example of the construction for flow shop scheduling with r = d = 2. Only long-operations on
the first 4 and last 4 groups of machines are depicted. The long-operations of one job of each frequency are
highlighted in dark gray.

PROOF. During the execution of a long-operation of ji (that requires 3d−i time units),
job jj can complete at most one long-operation that requires 3d− j time units (since its
short-operation on machine mi has to wait). As ji has 3i long-operations, the two jobs
can perform operations at the same time during at most 3i · 3d− j = 3d

3 j−i = lb
3 j−i time

units.

It follows that, for each i = 1, . . . , d, at most a fraction 1/3 + 1/32 + · · · + 1/3i ≤
1/3 + 1/32 + · · · + 1/3d ≤ 1

3−1 = 1/2 of the time spent for long-operations of a job ji is
performed at the same time as long-operations of jobs with lower frequency. Hence, a
feasible schedule has makespan at least d · lb/2. As d = �(log lb) (recall that lb = 3d),
the optimal makespan of the constructed job shop instance is �(lb · log lb).

2.2. Flow Shops with Large Makespan

2.2.1. Construction. For sufficiently large integers d and r, consider the flow shop
instance defined as follows (we refer to Figure 3 for an example of the construction
with d = r = 2).

— There are r2d groups of machines4, denoted by M1, M2, . . . , Mr2d. Each group Mg
consists of d machines mg,1, mg,2, . . . , mg,d (one for each frequency). Finally the ma-
chines are ordered in such a way that mg,i is before mh, j if either (i) g < h or (ii)
g = h and i > j. The latter case will ensure that, within each group of machines,
long-operations of jobs with high frequency will be scheduled before long-operations
of jobs with low frequency, a fact that will be used in the proof of Lemma 2.3.

In the example of Figure 3, there are 24 groups of machines, where machines
{mg,1, mg,2} are those that belong to group Mg. The only long-operations that can be
scheduled on machine mg,i are those belonging to jobs of frequency i. In top down
order, note that machine mg,2 is before mg,1 and before mh,i for any g < h and i ∈ {1, 2}.
— For each frequency f = 1, . . . , d, there are r2(d− f ) groups of jobs, denoted by

J f
1 , J f

2 , . . . , J f
r2(d− f ) . Each group J f

g consists of r2 f copies, referred to as j f
g,1, j f

g,2, . . . ,

j f
g,r2 f , of the job that must be processed during r2(d− f ) time units on the machines

ma+1, f , ma+2, f , . . . , ma+r2 f , f where a = (g − 1) · r2 f

4These groups of machines “correspond” to copies of the job shop instance in Section 2.1.
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and during 0 time units on all the other machines that are required to create a flow
shop instance. Let J f be the set of jobs that correspond to frequency f , that is,
J f = {j f

g,a : 1 ≤ g ≤ r2(d− f ), 1 ≤ a ≤ r2 f }.
(In the example of Figure 3, there are four groups of jobs with frequency one, and one

group with frequency two. Every group of frequency one has four identical jobs: in the
figure, on machine m1,1 the leftmost operations of equal length are the first operations
of the jobs in group J1

1 = {j11,1, . . . , j11,4}; the four leftmost gray operations in cascade are
the operations of job j11,2; the leftmost operations on machines m13,1, m14,1, m15,1, m16,1

belong to the last group J1
4 of frequency one. The rightmost (smaller) operations are

those belonging to the unique group J2
1 of frequency two; the rightmost gray opera-

tions in cascade are, respectively, the first and the last four operations out of the 16
operations of job j2

1,2.)
Note that the length of any job and the load on any machine are r2d, which equals

lb. Moreover, the total number of machines and the total number of jobs are both r2d ·d.
In the subsequent, we will call the operations that require more than 0 time units

long-operations and the operations that only require 0 time units short-operations.

2.2.2. Analysis. We shall show that the length of any feasible schedule must be �(lb ·
min[r, d]). As lb = r2d, instances constructed with r = d have optimal makespan �(lb ·
log lb/ log log lb).

Fix an arbitrarily feasible schedule for the jobs. We start by showing a useful prop-
erty. For a job j, let dj(i) denote the delay between its ith and (i+ 1)-th long-operations,
that is, the time units between the end of job j’s ith long-operation and the start of its
(i + 1)-th long-operation (let dj(i) = ∞ for the last long-operation). We say that the ith
long-operation of a job j of frequency f is good if dj(i) ≤ r2

4 · r2(d− f ).

LEMMA 2.2. If the schedule has makespan less than r · lb, then the fraction of good
long-operations of each job is at least

(
1 − 4

r

)
.

PROOF. Assume that the considered schedule has makespan less than r·lb. Suppose
toward contradiction that there exists a job j of frequency f so that j has at least 4

r r2 f

long-operations that are not good. But then the length of j is at least 4
r r2 f · r2

4 · r2(d− f ) =
r · r2d = r · lb, which contradicts that the makespan of the considered schedule is less
than r · lb.

We continue by analyzing the schedule with the assumption that its makespan is
less than r·lb (otherwise, we are done). In each group Mg of machines, we will associate
a set Tg, f of time intervals for each frequency f = 1, . . . , d. The set Tg, f contains the
time intervals corresponding to the first half of all good long-operations scheduled on
the machine mg, f . For intuition of the following lemma, see Figure 4.

LEMMA 2.3. Let k, � : 1 ≤ k < � ≤ d be two different frequencies. Then, the sets Tg,k

and Tg,� , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

PROOF. Suppose toward contradiction that there exist time intervals tk ∈ Tg,k and
t� ∈ Tg,� that overlap, that is, tk ∩ t� 
= ∅. Note that tk and t� correspond to good long-
operations of jobs of frequencies k and �, respectively. Let us say that the good long-
operation corresponding to t� is the ath operation of some job j. Note that, since j has
a long-operation on machine mg,�, job j has frequency �. As t� and tk overlap, the ath
long-operation of j must overlap the first half of the long-operation corresponding to
tk. As job j has a short operation on machine mg,k after its long-operation on machine
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Fig. 4. The intuition behind the proof of Lemma 2.3.

mg,� (recall that machines are ordered mg,d, mg,d−1, . . . , mg,1 and � > k), job j’s (a+ 1)-th
operation must be delayed by at least r2(d−k)/2 − r2(d−�) time units and thus dj(a) >

r2(d−k)/2 − r2(d−�) > r2

4 r2(d−�) (using � > k), which contradicts that the ath long-operation
of job j is good.

Let L(Tg, f ) denote the total time units covered by the time intervals in Tg, f . We
continue by showing that there exists a g such that

∑d
f=1 L(Tg, f ) ≥ lb

4 · d. With this
in place, it is easy to see that any schedule has makespan �(d · lb) since all the time
intervals {Tg, f : f = 1, . . . , d} are disjoint (Lemma 2.3).

LEMMA 2.4. There exists a g ∈ {1, . . . , r2d} such that

d∑
f=1

L(Tg, f ) ≥ lb
4

· d.

PROOF. As
∑d

f=1 L(Tg, f ) adds up the time units required by the first half of each
good long-operation scheduled on a machine in Mg, the claim follows by showing that
there exists a group of machines Mg from {M1, M2, . . . , Mr2d} so that the total time
units required by the good long-operations on the machines in Mg is at least lb·d

2 .
By Lemma 2.2 we have that the good long-operations of each job require at least

lb·(1 − 4
r

)
time units. Since the total number of jobs is r2dd the total time units required

by all good long-operations is at least lb · (
1 − 4

r

) · r2dd. As there are r2d many groups
of machines, a simple averaging argument guarantees that in at least one group of
machines, say Mg, the total time units required by the good long-operations on the
machines in Mg is at least lb · (1 − 4

r

)
d > lb · d/2 for a sufficiently large r.

3. HARDNESS OF JOB SHOPS AND GENERALIZED FLOW SHOPS

Theorem 1.2 and Theorem 1.3 are proved by presenting a gap-preserving reduction,
�, from the graph coloring problem to the generalized flow shop problem, that has
two parameters, r and d. Given an n-vertex graph G whose vertices are partitioned
into d independent sets, it computes in time polynomial in n and rd, a generalized
flow shop instance S(r, d) where vertices are mapped to jobs. By using jobs of different
frequencies, as done in the gap construction, we have the property that “many” of the
jobs corresponding to adjacent vertices cannot be scheduled in parallel in any feasible
schedule. On the other hand, by letting jobs skip those machines corresponding to
non-adjacent vertices, jobs corresponding to an independent set in G can be scheduled
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in parallel (their operations can overlap in time) in a feasible schedule. This ensures
that the following completeness and soundness hold for the resulting generalized flow
shop instance S(r, d).

— Completeness. If G can be colored using L colors, then C∗
max ≤ lb · 2L.

— Soundness. For any L ≤ r. Given a schedule where at least half the jobs finish
within lb · L time units, we can find an independent set of G of size n/(8L), in time
polynomial in n and rd.

In the proposed construction all jobs have the same length r2d and all machines
the same load r2d. Hence, lb = r2d. Instance S(r, d) has a set of r2d jobs and a set of
r2d machines for each vertex in G. The total number of jobs and the total number of
machines are thus both r2dn. Moreover, each job has at most dr2d operations.

In Section 3.1, we present a reduction with somewhat stronger properties for the job
shop problem. As the reduction is relatively simple, it serves as a good starting point
before reading the similar but more complex reduction � for the generalized flow shop
problem. Before continuing, let us see how the reduction �, with the aforementioned
properties, is sufficient for proving Theorem 1.2 and Theorem 1.3.

PROOF OF THEOREM 1.2. By Theorem 1.7, for sufficiently large K and 	 = 2K O(log K)
,

it is NP-hard to decide if an n-vertex graph G in G[K, 1/K
1

25 (log K)] with bounded degree
	 has

χ(G) ≤ K or α(G) ≤ n

K
1

25 (log K)
.

As the vertices of a graph with bounded degree 	 can, in polynomial time, be par-
titioned into 	 + 1 independent sets, we can use � with parameters d = 	 + 1 and
r = K

1
25 (log K) (r is chosen such that the condition L ≤ r in the soundness case of � is

satisfied for L = K
1

25 (log K)/8). It follows by the completeness case and soundness case
of � that it is NP-hard to distinguish if the obtained scheduling instance has a sched-
ule with makespan at most lb · 2K or no solution schedules more than half of the jobs
within lb · K

1
25 (log K)/8 time units. Moreover, each job has at most dr2d operations, which

is a constant that only depends on K.

PROOF OF THEOREM 1.3. The proof is similar to the proof of Theorem 1.2 with the
exception that the graphs have no longer bounded degree. Note that, since the con-
struction is exponential in d, we aim for a “small” value of d that ensures that two jobs
corresponding to two adjacent nodes get different frequencies. This can be done if the
graph can be colored with “few” colors. If the graph has “small” bounded degree 	, then
d = 	 + 1 suffices to ensure the above property. Otherwise, the following lemma says
that we can construct another graph G′ with “similar” properties as G, but G′ is easily
colorable with at most (log n)δ colors, which is sufficiently “small” for our purposes.

When using probabilistic arguments for graphs with n vertices, we shall use the
term overwhelming (negligible, respectively) to denote probability that tends to 1 (to 0,
respectively) as n tends to infinity.

LEMMA 3.1. For any constant δ ≥ 1, given an n-vertex graph G = (V, E), we can
construct in randomized polynomial time a subgraph G′ = (V, E′) of G with E′ ⊆ E
such that

(1) The vertices are partitioned into (log n)δ sets, each set forms an independent set in
G′.

(2) χ(G′) ≤ χ(G).
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(3) With overwhelming probability the following holds: given an independent set of G′,
with n

(log n)δ−1 vertices, we can find an independent set of G with n
(log n)δ vertices, in

polynomial time.

PROOF. Given an n-vertex graph G = (V, E), we give a probabilistic construction of
G′ = (V, E′). Each vertex v ∈ V is assigned independently, uniformly at random to one
of the sets I1, I2, . . . , I(log n)δ . Let E′ ⊆ E be those edges that are incident to vertices
placed in different sets, that is, an edge is deleted from E to yield E′ if and only if it is
adjacent to two vertices u ∈ Ii and v ∈ Ii for some i : 1 ≤ i ≤ (log n)δ.

The graph G′ obviously satisfies the first two properties in the lemma. We continue
by showing that G′ satisfies property 3. In fact, we show that the following stronger
property holds with overwhelming probability: any independent set I′ of G′, with |I′| =

n
(log n)δ−1 , induces a subgraph of G with at least n

(log n)δ maximal connected components.
This is done by proving that if a subset V ′ of n/(log n)δ−1 vertices induces a subgraph
of G with less than n

(log n)δ maximal connected components, then the probability that V ′

is an independent set of G′ is negligible.
Fix a set V ′ ⊆ V of n/(log n)δ−1 vertices and let H be the subgraph of G induced

by V ′. Assuming that H can be partitioned into s maximal connected components,
with s < n

(log n)δ , we calculate the probability that V ′ forms an independent set in G′.
Let H1, H2, . . . , Hs denote the maximal connected components of H. We use |H�|, for
� : 1 ≤ � ≤ s, to denote the number of vertices of H�. If the vertices of H form an
independent set in G′ then all vertices of a connected component must be placed in
the same set Ii, for some i : 1 ≤ i ≤ (log n)δ . The probability that this happens, for a

connected component with k vertices, is at most
(

1
log n

)δ(k−1)
. As the different maximal

connected components are independent, the probability that V ′ forms an independent
set in G′ is at most

(
1

log n

)δ(|H1|−1) ( 1
log n

)δ(|H2|−1)

. . .

(
1

log n

)δ(|Hs|−1)

=
(

1
log n

)δ(
∑s

i=1 |Hi|−s)
.

As
∑s

i=1 |Hi| = |V ′| = n/(log n)δ−1 and s < n
(log n)δ , the probability that V ′ forms an inde-

pendent set in G′ is at most

(
1

log n

)δ·n/(log n)δ−1 ·(1−1/ log n)

.

The number of ways to fix the set V ′ is at most(
n

n/(log n)δ−1

)
≤ (

e · log n
)(δ−1)n/(log n)δ−1

.

Hence, the union bound implies that the probability that graph G′ fails to satisfy prop-
erty 3 is at most

(
1

log n

)δ·n/(log n)δ−1 ·(1−1/ log n)

· (
e · log n

)(δ−1)n/(log n)δ−1

which tends to 0 as n tends to infinity.
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Assuming NP 
⊆ DTIME(2O(log n)O(1)
), Theorem 1.8 with K = log n says that

there is no polynomial algorithm that decides if an n-vertex graph G in
G[log n, 1/(log n)�(log log n)] has

χ(G) ≤ log n or α(G) ≤ n
(log n)�(log log n)

.

Given an n-vertex graph G in G[log n, 1/(log n)�(log log n)], we construct graph G′ from G
by applying Lemma 3.1 with δ = 3/ε, where ε > 0 is an arbitrarily small constant. We
then obtain a generalized flow shop instance S from G′ by using � with parameters
r = (log n)δ−1 and d = (log n)δ . The size of S is O(r2dn · 	r2d) = O(2O(log n)O(1/ε)

) and
lb = r2d = (log n)2(δ−1)(log n)δ and hence log lb ≤ (log n)δ+1 (for large enough n).

The analysis is straightforward.

— Completeness. If χ(G) ≤ log n, then χ(G′) ≤ log n and, by the completeness case of
�, there is a schedule of S with makespan lb · 2 log n.

— Soundness. Assuming that the probabilistic construction of G′ succeeded, we have

α(G) ≤ n
n�(log log n)

⇒ α(G′) ≤ n
(log n)δ−1 ,

which in turn implies by the soundness case of � that no solution schedules more
than half the jobs within lb · (log n)δ−1/8 time units (recall that r was chosen to be
greater than (log n)δ−1/8).

The probabilistic construction of G′ succeeds with overwhelming probability. Fur-
thermore, given a schedule, we can detect such a failure in polynomial time and repeat
the reduction. It follows that an approximation algorithm for F| jumps|Cmax with per-
formance guarantee

(log n)δ−1/8
2 log n

= (log n)δ−2/16

or an approximation algorithm for F| jumps| ∑C j with performance guarantee

(n/2) · (log n)δ−1/8
2n · log n

= (log n)δ−2/32

would imply that NP ⊆ Z TIME(2O(log n)O(1/ε)
). Finally, we note that δ was chosen so

that for large enough n we have

(log lb)1−ε ≤ (log n)(1−ε)(δ+1) = (log n)3/ε+1−3−ε =

(log n)δ−2−ε < 1/32 · (log n)δ−2.

3.1. Job Shops

In this section, we give and analyze a somewhat stronger reduction than � for the
general job shop problem. The number of operations per job is at most (	 + 1)rd, the
number of jobs and the number of machines are n, and the soundness case says that,
given a schedule with makespan lb · L, we can, in time polynomial in n and rd, find an
independent set of G of size (1− 	

r )n/L.5 As the reduction is relatively simple, it serves
as a good starting point for reading the more complex reduction to the generalized flow
shop problem.

5The condition that r needs to be greater than 	 can be removed as done in the analysis of generalized flow
shops. In this section, we have chosen to provide a simpler analysis, which still describes most of the ideas
used in the flow shop analysis.
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Fig. 5. An example of the reduction with r = 4, d = 2, I1 = {A}, and I2 = {B, C}. Note that jobs only have
short-operations on machines corresponding to adjacent vertices. (The jobs corresponding to A, B, and C
are depicted to the left, center, and right respectively).

Fig. 6. An example of how the jobs are scheduled in the completeness case. Here, V1 = {A} and V2 = {B, C}.

3.1.1. Construction. Given an n-vertex graph G = (V, E) whose vertices are partitioned
into d independent sets, we create a job shop instance S(r, d), where r and d are the pa-
rameters of the reduction. Instance S(r, d) has a machine mv and a job jv for each vertex
v ∈ V. We continue by describing the operations of the jobs. Let I1, I2, . . . ,Id denote
the independent sets that form a partition of V. A job jv that corresponds to a vertex
v ∈ Ii, for some i : 1 ≤ i ≤ d, has a chain of ri long-operations O1, jv , O2, jv , . . . , Ori, jv ,
each of them requiring rd−i time units, that must be processed on the machine mv . Be-
tween two consecutive long-operations O p, jv , O p+1, jv , for p : 1 ≤ p < ri, we have a set of
short-operations placed on the machines {mu : {u, v} ∈ E} (the machines corresponding
to adjacent vertices) in some order. A short-operation requires time 0. For an example
of the construction, see Figure 5.

Remark 3.2. The construction has n machines and n jobs. Each job has length rd

and each machine has load rd. Hence, lb = rd. Moreover, the number of operations per
job is at most (	 + 1)rd.

3.1.2. Completeness. We prove that if the graph G can be colored with L colors then
there is a “relatively short” solution to the job shop instance (see Figure 6).

LEMMA 3.3. If χ(G) = L, then there is a schedule of S(r, d) with makespan lb · L.

PROOF. Let V1, V2, . . . , VL be a partition of V into L independent sets. Consider one
of these sets, say Vi. As the vertices of Vi form an independent set, no short-operations
of the jobs {jv}v∈Vi, are scheduled on the machines {mv}v∈Vi. Since short-operations
require time 0 we can schedule the jobs {jv}v∈Vi within lb time units. We can thus
schedule the jobs in L-”blocks” in the order {jv}v∈V1 , {jv}v∈V2 , . . . , {jv}v∈VL . The total
length of this schedule is lb · L.

3.1.3. Soundness. We prove that, given a schedule where many jobs are completed
“early”, we can, in polynomial time, find a “big” independent set of G.

LEMMA 3.4. Given a schedule of S(r, d) where at least half the jobs finish within lb·L
time units, we can, in time polynomial in n and rd, find an independent set of G of size
at least (1 − 	

r )n/(2L).

PROOF. First, we show that two jobs corresponding to adjacent vertices cannot be
scheduled in parallel. (The proof of the following claim is similar to the proof of
Lemma 2.1 in the gap construction.)
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CLAIM 3.5. Let u ∈ Ii and v ∈ I j be two adjacent vertices in G with i < j. Then, at
most, a fraction 1

r of the long-operations of jv can overlap the long-operations of ju.

PROOF OF CLAIM. There are ri and r j long-operations of ju and jv , respectively. As
the vertices u and v are adjacent, job jv has a small-operation on machine mu between
any two long-operations. Hence, at most one long-operation of jv can be scheduled in
parallel with a long-operation of ju and the total number of such operations in any
schedule is at most ri ≤ r j

r (using i < j).

Now consider a schedule where at least half the jobs finish within lb · L time units.
For each i : 1 < i ≤ d and for each v ∈ Ii, we disregard those long-operations of job jv
that overlap long-operations of the jobs {ju : {u, v} ∈ E and u ∈ I j for some j < i}. After
disregarding operations, no two long-operations corresponding to adjacent vertices will
overlap in time. Furthermore, by applying Claim 3.5 and using that the maximum
degree of G is 	, we know that at most a fraction 	

r of a job’s long-operations have been
disregarded. Thus the remaining long-operations of a job require at least (1 − 	

r ) · lb
time units. As at least half the jobs (n/2 many) finish within L · lb time units, we
have that at least (1 − 	

r ) · lb · n/2 time units are scheduled on the machines within
L · lb time units. By a simple averaging argument we have that at least (1 − 	

r )n/(2L)
of the remaining long-operations must overlap at some point within the first L · lb
time units in the schedule. As the remaining long-operations that overlap correspond
to different vertices that are nonadjacent, the graph has an independent set of size
(1 − 	

r )n/(2L). Moreover, we can find such a point (corresponding to an independent
set) in the schedule, for example, by considering the start and end points of all long-
operations that were not disregarded.

3.2. Generalized Flow Shops

Here, we present the reduction � for the general flow shop problem where jobs are
allowed to skip machines. The idea is similar to the reduction presented in Section 3.1
for the job shop problem. The main difference is to ensure, without using cyclic jobs,
that jobs corresponding to adjacent vertices cannot be scheduled in parallel.

3.2.1. Construction. Given an n-vertex graph G = (V, E) whose vertices are partitioned
into d independent sets, we create a generalized flow shop instance S(r, d), where r and
d are the parameters of the reduction. Let I1, I2, . . . Id denote the independent sets
that form a partition of V.

The instance S(r, d) is very similar to the gap instance described in Section 2.2. The
main difference is that in S(r, d) distinct jobs can be scheduled in parallel if their cor-
responding vertices in G are not adjacent. This is obtained by letting a job skip those
machines corresponding to nonadjacent vertices. (The gap instance of Section 2.2 can
be seen as the result of the following reduction when the graph G is a complete graph
with d nodes.) For convenience, we give the complete description with the necessary
changes.

— There are r2d groups of machines, denoted by M1, M2, . . . , Mr2d. Each group Mg
consists of n machines {mg,v : v ∈ V} (one for each vertex in G). Finally, the machines
are ordered in such a way that mg,u is before mh,v if either (i) g < h or (ii) g = h and
u ∈ Ik, v ∈ I� with k > �. The latter case will ensure that, within each group of
machines, long-operations of jobs with high frequency will be scheduled before long-
operations of jobs with low frequency, a fact that is used to prove Lemma 3.11. For
each f : 1 ≤ f ≤ d and for each vertex v ∈ I f there are r2(d− f ) groups of jobs,
denoted by Jv

1 , Jv
2 , . . . , Jv

r2(d− f ) . Each group Jv
g consists of r2 f copies, referred to as
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Fig. 7. An example of the reduction with r = 2, d = 2, I1 = {A} and I2 = {B, C}. Only the first two out
of r2d = 16 groups of machines are depicted with the jobs corresponding to A,B, and C to the left, center, and
right, respectively.

jvg,1, jvg,2, . . . , jvg,r2 f , of the job that must be processed during r2(d− f ) time units on the
machines

ma+1,v , ma+2,v , . . . , ma+r2 f ,v where a = (g − 1) · r2 f

and during 0 time units on machines corresponding to adjacent vertices, that is,
{ma,u : 1 ≤ a ≤ r2d, {u, v} ∈ E} (in an order so that it results in a generalized flow
shop instance).
Let Jv be the set of jobs that correspond to the vertex v, that is, Jv = {jvg,i : 1 ≤ g ≤
r2(d− f ), 1 ≤ i ≤ r2 f }.
Remark 3.6. The construction has r2dn machines and r2dn jobs. Each job has length

r2d and each machine has load r2d. Hence, lb = r2d. Moreover, the number of operations
per job is at most (	 + 1)r2d.

In the subsequent, we will call the operations that require more than 0 time units
long-operations and the operations that only require 0 time units short-operations. For
an example of the construction, see Figure 7.

3.2.2. Completeness. We prove that if the graph G can be colored with L colors then
there is a relatively “short” solution to the general flow shop instance.

LEMMA 3.7. If χ(G) = L, then there is a schedule of S(r, d) with makespan lb · 2L.

PROOF. We start by showing that all jobs corresponding to nonadjacent vertices can
be scheduled within 2 · lb time units.

CLAIM 3.8. Let IS be an independent set of G. Then, all the jobs
⋃

v∈IS Jv can be
scheduled within 2 · lb time units.

PROOF OF CLAIM. Consider the schedule defined by scheduling the jobs correspond-
ing to each vertex v ∈ IS as follows. Let I f be the independent set with v ∈ I f . A job
jvg,i corresponding to vertex v is then scheduled without interruption starting at time

r2(d− f ) · (i − 1).
The schedule has makespan at most 2 · lb since a job is started at latest at time

r2(d− f ) · (r2 f − 1) < lb and requires lb time units in total.
To see that the schedule is feasible, observe that no short-operations of the jobs

in
⋃

v∈IS Jv need to be processed on the same machines as the long-operations of the
jobs in

⋃
v∈IS Jv (this follows from the construction and from the fact that the jobs

correspond to nonadjacent vertices). Moreover, two jobs jvg,i, jv
′

g′,i′ with either g 
= g′
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or v 
= v ′ have no two long-operations that must be processed on the same machine.
Hence, the only jobs that might delay each other are jobs belonging to the same vertex
v and the same group g, but these jobs are started with appropriate delays (depending
on the frequency of the job).

Assuming χ(G) = L we partition V into L independent sets V1, V2, . . . , VL . By this
claim, the jobs corresponding to each of these independent sets can be scheduled within
2 · lb time units. We can thus schedule the jobs in L-”blocks”, one block of length 2 · lb
for each independent set. The total length of this schedule is lb · 2L.

3.2.3. Soundness. We prove that, given a schedule where many jobs are completed
“early”, we can find a “big” independent set of G, in polynomial time.

LEMMA 3.9. For any L ≤ r, given a schedule of S(r, d) where at least half the jobs fin-
ish within lb · L time units, we can, in time polynomial in n and rd, find an independent
set of G of size at least n/(8L).

PROOF. Fix an arbitrarily schedule of S(r, d) where at least half the jobs finish within
lb · L time units. We now disregard the jobs that do not finish within lb · L time units.
Note that the remaining jobs are at least r2dn/2 many. As for the gap construction
(see Section 2.2), we say that the ith long-operation of a job j of frequency f is good if
the delay dj(i) between job j ’s ith and (i + 1)-th long-operations is at most r2

4 · r2(d− f).
In each group Mg of machines, we will associate a set Tg,v of time intervals with each
vertex v ∈ V. The set Tg,v contains the time intervals corresponding to the first half of
all good long-operations scheduled on the machine mg,v . We also let L(Tg,v) denote the
total time units covered by the time intervals in Tg,v . Scheduling instance S(r, d) has
similar structure and similar properties as the gap instances created in Section 2.2.
By using the fact that all jobs (that were not disregarded) have completion time at
most L · lb, which is by assumption at most r · lb, Lemma 3.10 follows from the same
arguments as Lemma 2.2.

LEMMA 3.10. The fraction of good long-operations of each job is at least
(
1 − 4

r

)
.

Consider a group Mg of machines and two jobs corresponding to adjacent vertices
that have long-operations on machines in Mg. Recall that jobs corresponding to ad-
jacent vertices have different frequencies. By the ordering of the machines, we are
guaranteed that the job of higher frequency has, after its long-operation on a machine
in Mg, a short-operation on the machine in Mg where the job of lower frequency has
its long-operation. The following lemma now follows by observing, as in the proof of
Lemma 2.3, that the long-operation of the high frequency job can only be good if it is
not scheduled in parallel with the first half of the long-operation of the low-frequency
job.

LEMMA 3.11. Let u ∈ Ik and v ∈ Il be two adjacent vertices in G with k > l. Then,
the sets Tg,u and Tg,v , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

Finally, Lemma 3.12 is proved in the very same way as Lemma 2.4. Their different
inequalities arise because in the gap instance we had d · r2d jobs and here we are
considering at least r2dn/2 jobs that were not disregarded.

LEMMA 3.12. There exists a g ∈ {1, . . . , r2d} such that∑
v∈V

L(Tg,v) ≥ lb · n
8

.
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Fig. 8. An example of the representation. The light gray job is defined by ([m1, 2], [m2, 2]) and the dark gray
job is defined by ([m2, 1], [m1, 1])2.

We conclude by a simple averaging argument. Consider a g, such that
∑

v∈V L(Tg,v)
is at least lb·n

8 . This is guaranteed to exist by the lemma above. As all jobs that were
not disregarded finish within L · lb time units, at least lb·n

8 /(L · lb) = n
8L time intervals

must overlap at some point during the first L · lb time units of the schedule, and, since
they overlap, they correspond to different vertices that form an independent set in G
(Lemma 3.11). Moreover, we can find such a point in the schedule, for example, by
considering all different blocks and in each block verify the start and end points of the
time intervals.

4. HARDNESS OF JOB SHOPS WITH FIXED NUMBER OF MACHINES

In this section, we prove Theorem 1.5 and 1.6. We show that problem J2||Cmax
(J3|pmtn|Cmax) has no PTAS by presenting a gap-preserving reduction from the NP-
hard problem to distinguish between n-vertex cubic graphs that have an independent
set of size β · n and those that have no independent set of size α · n, for some β > α (see
Theorem 1.9). More specifically, given a cubic graph G(V, E), we construct an instance
S of J2||Cmax (J3|pmtn|Cmax) so that, for some L defined later, we have the following
completeness and soundness analyses.

— Completeness. If G has an independent set of size βn, then S has a schedule with
makespan L.

— Soundness. If G has no independent set of size αn, then all schedules of S have
makespan at least (1 + �(1))L.

Throughout this section, we will use the following notation to define jobs (see Figure 8
for an example). An operation is defined by a pair [mi, p], where p is the process-
ing time required on machine mi. Let s1, . . . , sy be sequences of operations, and let
(s1, . . . , sy) stand for the sequence resulting by their concatenation in the given order.
We use (s1, . . . , sy)x to denote the sequence obtained by repeating (s1, . . . , sy) x times.

Before presenting the reductions and the corresponding analyses, we have the fol-
lowing lemma (whose standard proof is included for the sake of completeness), which
will be useful in our constructions.

LEMMA 4.1. For any sufficiently small fixed ε > 0, we can, in time polynomial in n,
construct a family of sets C = {C1, C2, . . . , Cn2} with the following properties.

(1) Each set Ci ∈ C is a subset of {1, 2, . . . , (1/ε)1/ε log n} and has size log n.
(2) Two sets Ci ∈ C and C j ∈ C, with i 
= j, satisfy |Ci ∩ C j| ≤ ε log n.

PROOF. Consider the following procedure to obtain such a family C.

(1) Initiate S with all binary strings of length (1/ε)1/ε log n with log n many 1’s
(2) Let C = ∅
(3) REPEAT

(a) Pick a binary string x ∈ S, and add the set {i : xi = 1} to C
(b) Remove all the binary strings from S that share at least ε log n many 1’s (ele-

ments) with x
(4) UNTIL S is empty
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It is clear that the family C returned by this procedure satisfies properties (1) and
(2). We continue by analyzing the size of the returned C. We will use that

(a
b

)
is bounded

from above by both
( a
�a/2�

)
and

( a·e
b

)b , where the latter follows by observing that
(a

b

) ≤ ab

b !

and b ! ≥ (b/e)b from Stirling’s approximation. For simplicity, we assume all numbers
to be integral. At the ith iteration we select a set Ci with log n many 1’s. At that
iteration, a string s from S to be removed must have j ∈ {ε log n, . . . , log n} many 1’s
as in Ci among the log n 1’s available in s (there are at most

(log n
j

)
different choices for

this), and in the remaining log n − j places where s has 1’s the selected set Ci has 0’s
(there are at most

(((1/ε)1/ε−1) log n
log n− j

)
different choices for this).

So, at each iteration, the number of binary strings of S that we remove is at most
log n∑

j=ε log n

(
log n

j

)
·
(

((1/ε)1/ε − 1) log n
log n − j

)
≤

(1 − ε) log n
(

log n
log n

2

)
·
(

(1/ε)1/ε · log n
(1 − ε) log n

)
≤

(1 − ε) log n

(
(2e)

log n
2 ·

(
(1/ε)1/ε · e

1 − ε

)(1−ε) log n
)

≤

(1 − ε) log n
(
4e2 · (1/ε)1/ε

)(1−ε) log n
.

As the number of elements in S at the beginning is
((1/ε)1/ε log n

log n

) ≥ (1/ε)1/ε·log n, the
number of iterations and thus the size of C at the end of the process is at least

(1/ε)1/ε·log n

(1 − ε) log n
(
4e2 · (1/ε)1/ε

)(1−ε) log n =

1

(1 − ε) log n
(
(4e2)1−ε

)log n · (1/ε)1/ε·log n

(1/ε)1/ε log n(1−ε) =

(1/ε)log n

(1 − ε) log n
(
(4e2)1−ε

)log n ,

which is greater than n2 for sufficiently small ε.

4.1. The (Non-Preemptive) Two Machines Case

The construction will be presented together with some useful properties that will later
be used in the analysis. Before defining the jobs, we will define “types” and “blocks”
of operations. The jobs will later be defined as concatenations of blocks, which in turn
will be defined as concatenations of types.

4.1.1. Types. Let d = O(log n). For each frequency f : 1 ≤ f ≤ d, we define type T f

and type T̄ f as

T f :=
(
[m1, n4(d− f )], [m2, 0]

)n4 f

T̄ f :=
(
[m2, n4(d− f )], [m1, 0]

)n4 f

.
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Fig. 9. a) An example of two compatible types T f and T̄ f that can be scheduled in parallel. b) Two types
Ti, T̄ j with i > j, for which there are “many” time units during which they cannot be scheduled in parallel.

We will call the operations of T f and T̄ f that require n4(d− f) time units long-operations
and the operations that require 0 time units short-operations. Note that a type requires
time n4 f n4(d− f ) = n4d. We say that the two types T f and T̄ f are compatible, for f : 1 ≤
f ≤ d. Note that two compatible types can be scheduled in parallel, that is, both can
be scheduled within n4d time units (see Figure 9(a)). Moreover, we have the following
lemma (for intuition see Figure 9(b)).

LEMMA 4.2. Two types Ti and T̄ j with i 
= j can be scheduled in parallel during at
most n4d/n4 time units in any feasible schedule.

PROOF. If i > j, then, as Ti has a short-operation on machine m2 between any two
consecutive long-operations on machine m1 at most one long-operation of Ti is sched-
uled in parallel with any long-operation of T̄ j. Since T̄ j has n4 j long-operations and
each long-operation of Ti requires n4(d−i) time units, it follows, by using i > j, that
the operations of T̄ j and Ti overlap at most n4(d−1) time units. The same result can be
obtained when i < j by using symmetric arguments.

4.1.2. Configurations. For i = 1, . . . , |E|, a configuration Ci = (Tπi,1, . . . , Tπi,logn) is an
ordered sequence of log n types, where πi, j ∈ {1, . . . , d} denotes the frequency of the j-th
type of configuration Ci. Lemma 4.1 shows that we can define a set of configurations
C = {Ci : i = 1, . . . , |E|} such that any two configurations Ci ∈ C and C j ∈ C with i 
= j
have at most ε log n types in common, for ε > 0 arbitrarily small. The set C̄ = {C̄i : i =
1, . . . , |E|} is defined in a similar way by using the types T̄i, that is, for i = 1, . . . , |E| we
have C̄i = (T̄πi,1, . . . , T̄πi,logn). Note that a configuration requires n4d log n time units.

4.1.3. Blocks. We are now ready to define the different blocks. For i = 1, . . . , |E|,
block Bi is obtained by concatenating Ci for n2-times, that is, Bi := (Ci)n2

; similarly,
B̄i := (C̄i)n2

. Let D = n4d+2 log n be the length of a block. As in the case of compatible
types, it is easy to see that two blocks Bi and B̄i can be scheduled in parallel. However,
only a tiny fraction of the operations of a configuration C̄i can overlap the operations
of a block B j, if i 
= j.
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Fig. 10. An overview of jb .

LEMMA 4.3. The operations of a configuration C̄i and a block B j, with i 
= j, can
be scheduled in parallel during at most εn4d log n time units in any feasible schedule,
where ε > 0 can be made an arbitrarily small constant.

PROOF. The block B j is composed of n2 repetitions of C j. Note that configuration C̄i
has at most ε log n compatible types with configuration C j, where ε > 0 can be made an
arbitrarily small constant. By Lemma 4.2 together with the fact that B j is a sequence
of n2 log n types, we have that the remaining (1 − ε) log n types of C̄i can be scheduled
in parallel with B j during at most (1 − ε) log n · n2 log n · n4d/n4 = o(n4d log n) time units.
Hence, the operations of C̄i and block B j can be scheduled in parallel during at most
εn4d log n + o(n4d log n) < ε ′n4d log n time units, for some ε ′ > 0 that can be made an
arbitrarily small constant.

4.1.4. Jobs. The blocks are now used as building blocks for defining the jobs. We will
define two kinds of jobs: a big job and vertex jobs. The big job jb is composed of an edge-
part PE(b ), followed by a tail-part PT(b ), a slack-part PS(b ), and finally a remaining-part
PR(b ), defined as follows:

PE(b ) := (B1, B2, . . . , B|E|)
PT(b ) := [m2, D · βn]

PS(b ) := ([m1, 1])D·3(1−β)n

PR(b ) := [m2, D · (1 − β)n]

Note that the length of job jb is L := D(|E| + n + 3(1 − β)n) = O(nD). A high level
representation of the long job jb is given in Figure 10 (for simplicity the structure of the
edge-part is omitted; the building blocks of this part have been previously described).

We have a vertex job jv for each vertex v ∈ V. Let ei, e j, ek be the 3 edges incident to
v with i < j < k. Job jv is composed of an edge-part PE(v) followed by a tail-part PT(v)
defined as follows:

PE(v) := (B̄i, B̄ j, B̄k)
PT(v) := [m1, D]

The length of a vertex job is 4D.
The following fundamental lemma motivates our construction. It shows that for

any pair {u, v} ∈ E of adjacent vertices, either ju or jv cannot be completed before the
end of jb ’s tail-part without delaying job jb �(D) time units. It follows that, without
delaying job jb , only jobs corresponding to vertices that form an independent set can
be completed before the end of jb ’s tail-part.

LEMMA 4.4. For any i ∈ {1, . . . , |E|}, if there are two copies of block B̄i to be sched-
uled, then at least γ · D time units of these two blocks cannot be scheduled in parallel
with the edge-part of job jb , for some γ < 1 that can be made arbitrarily close to 1.

PROOF. Recall that B̄i is composed of n2 repetitions of the configuration C̄i. Hence,
the two copies contain 2n2 copies of configuration C̄i. At most n2 of these configurations,
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Fig. 11. Structure of a schedule that does not delay the completion time of the big job jb (depicted in light
gray). The vertex jobs are depicted in a darker gray with one of them highlighted (in slightly lighter dark
gray). As a block B̄ j of a vertex job only can be scheduled in parallel with either the block Bj or the slack-part
of jb , the vertex jobs that complete before the slack-part of jb form an independent set. From that, it follows
that the number of vertex jobs that need to be scheduled in parallel with the slack- and remaining-parts of
jb depends on the size of a maximum independent set of the given graph which yields the desired gap.

that in total require D time units, can be scheduled in parallel with block Bi of job jb ’s
edge-part. Let R denote the remaining configurations that may only be scheduled in
parallel with the blocks {B j : j 
= i} of job jb ’s edge-part. Note that |R| ≥ n2. By
Lemma 4.3, we have that a configuration C̄i can be scheduled in parallel with a block
B j, with i 
= j, during at most εn4d log n time units, for an arbitrarily small constant
ε > 0. As the edge-part of jb consists of |E| = 3n/2 blocks, |R| ≥ n2, and configurations
belonging to a job must be scheduled in a fixed order, almost all configurations in R
are scheduled in parallel with at most one block of job jb ’s edge-part. It follows that at
most D + n2 · n4d log nε = D(1 + ε) time units of the two copies (requiring 2D time units
in total) can be scheduled in parallel with job jb ’s edge-part, where ε > 0 can be made
an arbitrarily small constant.

4.1.5. The Two Machines Analysis. The intuition of the analysis is depicted in Figure 11
(for simplicity only blocks are depicted and not their operations).

Completeness. We will see that if graph G has an independent set of size βn then all
vertex jobs can be scheduled in parallel with the big job jb . Thus, the makespan of the
schedule will equal L (the length of job jb ).

Let V ′ ⊆ V denote an independent set of G with |V ′| = βn. Since V ′ forms an
independent set no two vertices in V ′ are incident to the same edge. Thus, the edge-
parts PE(v) and PE(u) for two different nodes v, u ∈ V ′ do not contain any common block.
Recall that a block B̄i can be scheduled in parallel with a block Bi, the tail-part of a
vertex job requires time D on machine m1 and the tail-part PT(b ) of jb requires time
Dβn on machine m2. It follows that the vertex jobs corresponding to the vertices in V ′
can all be scheduled in parallel with the edge-part PE(b ) = (B1, B2, . . . , B|E|) and the
tail-part PT(b ) of jb . As (i) the slack-part of job jb consists of D · 3(1 − β)n unit time
operations on m1, (ii) a block B̄i can be scheduled in parallel with D slack-operations,
and (iii) the remaining-part of job jb consists of one operation on machine m2 that
requires time D(1 − β)n, the (1 − β)n jobs corresponding to the vertices of V \ V ′ can be
scheduled in parallel with the slack-part and remaining-part of jb .

Soundness. As the makespan equals L — the length of job jb — in the completeness
case, we will analyze the soundness case by showing that there is a fraction of the
operations belonging to the vertex jobs that are not scheduled in parallel with jb . Then
it follows that if graph G has no independent set of size αn then the length of any
schedule is at least (1 + �(1))L.

For any given schedule, let t1 be the time at which the tail-part PT(b ) of jb is com-
pleted, and t2 the time at which the remaining-part PR(b ) of jb starts. Let T := n · D
denote the sum of the lengths of tail-parts of the vertex jobs. Let τ1,τ2 and τ3 be the
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fraction of T spent to schedule tail-operations of the vertex jobs during time interval
[0, t1), [t1, t2) and [t2,∞), respectively.

It is easy to observe that any positive value of τ2 implies that τ2 · T time units
are not scheduled in parallel with job jb . Similarly a positive value of τ3 implies that
max{0, (τ3−(1−β))T} time units are not scheduled in parallel with jb . Finally, note that
there are at least τ1 · n vertex jobs that complete their edge-part before time t1. Since
G has no independent set of size αn, it follows that there are at least max{0, (τ1 − α)n}
conflicting pairs of vertex jobs (i.e., corresponding to adjacent pairs of vertices). There
are thus two “conflicting” copies of max{0, (τ1 − α)n} different blocks from {B̄i : i =
1, . . . , |E|} to be scheduled before time t1. By using Lemma 4.4, we can easily check
that at least (τ1 − α)n · γ · D time units of these conflicting blocks cannot be scheduled
in parallel with job jb .

By these arguments, it follows that the makespan of the schedule is at least the
length of job jb plus (β − α)γ · n · D, where γ < 1 can be made arbitrarily close to
1. Hence, as L = O(nD), the length of any schedule in the soundness case is at least
(1 + �(1))L.

4.2. The Preemptive Three Machines Case

In the following we consider the preemptive three machines case and prove
Theorem 1.6. We show that problem J3|pmtn|Cmax has no PTAS by presenting a gap-
preserving reduction from the NP-hard problem to distinguish between n-vertex cubic
graphs that have an independent set of size β ·n and those that have no independent set
of size α · n, for some β > α (see Theorem 1.9). In the reduction, the nodes of the cubic
graph are mapped to jobs that are constructed as a concatenation of “well-structured”
sequences. The definition and the analysis of these sequences are the arguments of
the next subsections. The jobs will be defined subsequently.

In the following, we will use several times a well-known property that ensures that
there exists an optimal schedule for the preemptive job shop problem where preemp-
tions occur at integral times [Bansal et al. 2006].

4.2.1. Sequences. Let d = O(log n), for each frequency f = 1, . . . , d, we define four
basic sequences of operations:

Sx, f :=
(
[mx, n4(d− f+1)], [mx+1, n4(d− f+1)]

)n4 f

S̄x, f :=
(
[mx+1, n4(d− f+1)], [mx, n4(d− f+1)]

)n4 f

for x ∈ {1, 2}.
Note that all sequences have the same length, �s := 2n4(d+1), and Sx, f can be sched-

uled in parallel with S̄x, f , for x ∈ {1, 2} and f = 1, . . . , d.
The following lemma will be used several times. Informally, it says that if for

“many” time units a sequence is scheduled in parallel with a lower frequency sequence,
then the completion time of the latter is larger than its length by “many” time units.
Figure 12(b) shows that only a “small” fraction of any given sequence can be scheduled
in parallel with another sequence having lower frequency, and without delaying the
latter; Figure 12(c) shows that any additional time unit spent in parallel would delay
the lower frequency sequence by the same amount).

LEMMA 4.5. For any j > i, consider a schedule for S̄x, j and Sx,i, where x ∈ {1, 2}. If
there are t time units where sequences S̄x, j and Sx,i are scheduled in parallel, then the
time required to complete Sx,i is at least �s + t − o

(
�s/n3

)
.
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Fig. 12. Two sequences with different frequencies with j > i.

PROOF. Consider a single operation O of Sx,i that requires n4(d−i+1) time units on
machine mx. As S̄x, j has an operation on machine mx between any two consequent
operations on machine mx+1, at most one operation of S̄x, j (that requires n4(d− j+1) time
units) can overlap O without interrupting it. Moreover, if, for some c > 1, c · n4(d− j+1)

time units of S̄x, j is scheduled in parallel with O, then operation O must have been
interrupted by at least � c·n4(d− j+1)

n4(d− j+1) � − 1 = �c − 1� operations of S̄x, j, that in total requires
�c − 1� · n4(d− j+1) additional time units. As Sx,i has 2n4i operations in total and j > i, S̄x, j

can be scheduled in parallel with Sx,i during at most 2n4i · n4(d− j+1) ≤ �s/n4 = o(�s/n3)
time units without delaying Sx,i and any additional time units spent in parallel will
delay Sx,i with at least the same amount.

4.2.2. Types. For each f = 1, . . . d, we define type T f and T̄ f as follows:

T f :=
(
S1, f , S2,(d− f+1)

)n4

T̄ f :=
(
S̄1, f , S̄2,(d− f+1)

)n4

Additionally, we define an extra type T0 as a sequence of 2n4 “long” operations on
machines m3 and m1 (this type will be part of the long job jb defined later):

T0 :=
(
S3,0, S1,0

)n4

S3,0 := [m3, �s]
S1,0 := [m1, �s]

The total length of a type is �T := 2n4�s. Note that the operations of T0 can be scheduled
in parallel with those of T f and T̄ f , for f = 1, . . . , d, and completed by time �T .

We additionally observe that if T0 and T f (T̄ f ) are completed by time �T , then at any
point of time interval [0, �T], either an occurrence of S1,0, or S1, f (or S̄1, f ) are processed
(similarly, S3,0, or S2,(d− f+1) (or S̄2,(d− f+1))). Moreover, this structural property cannot be
violated “many” times without increasing the completion time of either T0, or T f (T̄ f ),
by “many” time units.

Definition 4.6. For any given T f (T̄ f ) with f = 1, . . . , d, we say that T f ( T̄ f ) is
not alternated with T0 for t time units if at least one of the following two situations
happens.

(1) There are t units where neither an occurrence of S1,0 nor an occurrence of S1, f (S̄1, f )
is processed.
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Fig. 13. Different types. The dark gray operations in (a) belong to type T0 and can be scheduled in parallel
with type Tk. In (b), the operations of T̄ j are depicted and Lemma 4.8 says that these operations cannot be
scheduled in parallel with types Tk and T0, depicted in (a), without delaying one of them.

(2) There are t units where neither an occurrence of S3,0 nor an occurrence of S2,(d− f+1)

(S̄2,(d− f+1)) is processed.

LEMMA 4.7. Consider any feasible schedule for T0 and T f (T̄ f ) and let Cmax be the
completion time of the last operation. If for t units within time interval [0, Cmax] T f (T̄ f )
is not alternated with T0, then Cmax ≥ �T + �(t) − o(�T/n3).

PROOF. We provide the proof when T f is not alternated with T0 for t time units
because there are t units where, neither an occurrence of S1,0, nor an occurrence of S1, f
is processed (the other cases are similar).

Let t1 be the total time units where either an occurrence of S1,0 or an occurrence of
S1, f , but not both, is executed. Let t2 be the total time units where occurrences of both,
S1,0 and S1, f , are executed in parallel. Note that �T = t1 + 2 · t2, and therefore

Cmax ≥ t + t1 + t2 = t + �T − t2. (1)

If, for some c > 1, c ·n4(d− f+1) time units of an occurrence S1, f is scheduled in parallel
with an occurrence O of S1,0, then operation O must have been interrupted by at least
� c·n4(d− f+1)

n4(d− f+1) � − 1 = �c − 1� operations of S1, f ; This situation increases the completion time
of T0 by �c − 1� · n4(d− f+1) additional time units. As T0 has n4 occurrences of S1,0, S1, f

can be scheduled in parallel with the occurrences of S1,0 during at most n4 · n4(d− f+1) ≤
n4(d+1) = �s/2 = o(�T/n3) time units without delaying T0, and any additional time units
spent in parallel will delay T0 by at least the same amount. The latter means that

Cmax ≥ �T + t2 − o(�T/n3). (2)

By summing inequalities (1) and (2), we conclude that Cmax ≥ �T + t/2 − o(�T/n3), and
the claim follows.

The following lemma shows that only a small fraction of a type T̄ j can be scheduled
in parallel with Tk without delaying the completion time of T0 or Tk, whenever j 
= k.
For an intuition see Figure 13.
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LEMMA 4.8. For j 
= k, consider a schedule of T̄ j, Tk, and T0. If T̄ j is scheduled in
parallel with Tk during t time units then the completion time of either Tk or T0 is at
least �T + �(t) − o

(
�T/n3

)
.

PROOF. Recall that T̄ j =
(
S̄1, j, S̄2,(d− j+1)

)n4

and Tk =
(
S1,k, S̄2,(d−k+1)

)n4

. We have that
either j > k or d− j+ 1 > d− k + 1. We assume the former inequality (the other case is
symmetric).

By Lemma 4.7, we assume that the amount of time units t0 where neither S1,0,
nor S1,k are processed is “much smaller” than t, namely t0 = o(t), otherwise, the claim
follows.

Then, by Lemma 4.5, a sequence S̄1, j can be scheduled in parallel with a sequence
S1,k during at most o(�s/n3) time units without increasing the time needed to complete
S1,k and any additional time units spent in parallel increases the time needed of the
same amount. Since Tk has n4 occurrences of S1,k we have that if the occurrences of
S̄i, j are scheduled in parallel with the occurrences of S1,k, during t time units, then Tk
has completion time that is smaller than its length plus t, namely �t + t, by at most
o( �s

n3 · n4) units. It follows that Tk has completion time at least �T + �(t) − o(n · �s) =
�T + �(t) − o(�T/n3) (recall that �T = 2n4�s).

Moreover by a similar argument, if the occurrences of S̄1, j are scheduled in parallel
with the occurrences S1,0, during t time units, then, during at least �(t)−o(�T/n3) time
units T0 cannot be scheduled.

The statement now follows by observing that every second sequence of T̄ j is an
occurrence of S̄1, j and hence if T̄ j is scheduled in parallel with Tk during t > �T/n4

time units, then �(t) time units of the occurrences of S̄1, j must be scheduled. By these
arguments, this would cause either T0 or Tk to be interrupted during at least �(t) −
o(�T/n3) time units.

4.2.3. Configurations and Blocks. For i = 1, . . . , |E|, a configuration Ci = (Tπi,1, . . . , Tπi,logn)
is an ordered sequence of log n types, where πi, j ∈ {1, . . . , d} denotes the frequency
of the jth type of configuration Ci. Lemma 4.1 shows that we can define a set of
configurations C = {Ci : i = 1, . . . , |E|} such that any two configurations Ci ∈ C and
C j ∈ C with i 
= j have at most ε log n types in common, for ε > 0 arbitrarily small. The
set C̄ = {C̄i : i = 1, . . . , |E|} is defined in a similar way by using the types T̄i, that is, for
i = 1, . . . , |E|, we have C̄i = (T̄πi,1, . . . , T̄πi,logn)

We are now ready to define the different blocks. For i = 1, . . . , |E|, block Bi is ob-
tained by concatenating Ci for n2-times, that is, Bi := (Ci)n2

; similarly B̄i := (C̄i)n2
.

Additionally, we define an extra configuration C0 := (T0)log n and a corresponding block
B0 := (C0)n2

.
The length of any block is D := �T · n2 log n. Moreover, the operations of B0 can

always be scheduled in parallel with those of Bi and B̄i, for i = 1, . . . , |E|. Therefore,
the blocks B0, Bi, and B̄i, for i = 1, . . . , |E| can be completed by time D. However, only
a small fraction of a block B̄i can be scheduled in parallel with B j without delaying the
completion time of B0 or B j, whenever i 
= j.

LEMMA 4.9. For i 
= j, consider a schedule of B̄i, B j, and B0. If B̄i is scheduled in
parallel with B j during t time units, then the completion time of either B j or B0 is at
least D + �(t) − o(D/n1.5).

PROOF. The block B̄i is composed of n2 repetitions of C̄i (consisting of log n types)
and the block B j is composed of n2 repetitions of C j. Moreover, out of B̄i’s sequence
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Fig. 14. Long jobs.

of n2 log n types there is a subset A of at least (1 − ε)n2 log n types so that if T̄k ∈ A,
then the sequence Bi has no occurrence of Tk. By Lemma 4.8 together with that B j

is a sequence of n2 log n types and B0 is n2 log n repetitions of T0, we have that if t
time units of the types in A are scheduled in parallel with B j then either B j or B0

has completion time at least D + �(t) − o(n2 log n · �T/n3) = D + �(t) − o(D/n3) (recall
that D = �Tn2 log n). The statement now follows from observing that if t > D/n1.5

time units of B̄i have been scheduled then �(t) time units of the types in A have been
scheduled.

The remaining part of the construction has several similarities with the 2-machines
case.

4.2.4. Jobs. There are two long jobs, ja and jb . Job ja is composed of an edge-part
PE(a), followed by a tail-part PT(a), a slack-part PS(a), and finally a remaining-part PR(a)
defined as follows:

PE(a) :=
(
B1, B2, . . . , B|E|

)
PT(a) :=

(
[m1, 1], [m2, 1]

) βnD
2

PS(a) :=
(
[m1, n4], [m2, n4], [m3, n4]

) 3(1−β)nD
n4

PR(a) :=
(
[m1, 1], [m2, 1]

) (1−β)nD
2 .

Similarly, job jb is composed of an edge-part PE(b ), followed by a tail-part PT(b ), a slack-
part PS(b ), and finally a remaining-part PR(b ) defined as follows:

PE(b ) := (B0)|E|

PT(b ) :=
(
[m2, 1], [m3, 1]

) βnD
2

PS(b ) :=
(
[m2, n4], [m3, n4], [m1, n4]

) 3(1−β)nD
n4

PR(b ) :=
(
[m2, 1], [m3, 1]

) (1−β)nD
2 .

In Section 4.2.3 we observed that the operations of B0 can always be scheduled in
parallel with those of Bi, for i = 1, . . . , |E|. Thus, the edge-parts PE(a) and PE(b ) of jobs
ja and jb can be scheduled in parallel. Clearly, the same applies to the other parts. It
follows that long jobs can be scheduled in parallel and the length of both is

L :=
(|E| + n + 9(1 − β)n

)
D = O(nD). (3)

A high level representation of the long jobs is given in Figure 14, where the
operations of ja and jb are colored in white and gray, respectively (for simplicity,
the structure of the edge part is omitted, the structure of this part is discussed in
Section 4.2.3).
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We have a vertex job jv for each vertex v ∈ V. Let ei, e j, ek be the three edges incident
to v with i < j < k. Job jv is composed of an edge-part PE(v) followed by a tail-part PT(v)
defined as follows:

PE(v) :=
(
B̄i, B̄ j, B̄k

)
PT(v) :=

(
[m3, 1], [m1, 1]

) D
2

The length of any vertex job is 4D.
The following fundamental lemma motivates our construction. It shows that the

jobs corresponding to adjacent vertices cannot be completed before the end of ja’s tail-
part in the schedule without delaying either ja or jb . It follows that, without delaying
job ja or jb , only jobs corresponding to vertices that form an independent set can be
completed before job ja’s tail-part.

LEMMA 4.10. For I ⊆ {1, . . . , |E|}, consider a schedule of two copies of each block
in {B̄i}i∈I together with ja and jb . If the copies of {B̄i}i∈I are scheduled in parallel with
PE(a) during |I| · D + t time units, then the completion time of either ja or jb is at least
L + �(t) − o(D).

PROOF. Consider a fixed i ∈ I. Clearly, as block Bi requires D time units, we can
schedule at most D time units of the two blocks B̄i in parallel with block Bi. By
Lemma 4.9, if t time units of B̄i is scheduled in parallel with any Bh, for h = 1, . . . , |E|
and h 
= i, then either Bh (belonging to ja) or a block B0 (belonging to jb ) is interrupted
during at least �(t) − o(D/n1.5) time units. It follows that if D + t time units of the two
copies of B̄i are scheduled in parallel with PE(a) then, as PE(a) consists of 3n/2 blocks, ei-
ther job ja or job jb are interrupted during �(t)−o(3n/2·D/n1.5) = �(t)−o(D) time units.

By observing that the copies of {B̄i}i∈I can be scheduled in parallel during very few
time units, we have that if |I| · D + t time units of the copies of {B̄i}i∈I are scheduled
in parallel with PE(a), then either job ja or jb are interrupted during �(t) − o(D) time
units.

4.2.5. The Three Machines Unit Time Analysis.

Completeness. We will see that if graph G has an independent set of size βn then
all vertex jobs can be scheduled in parallel with the long jobs. The makespan of the
resulting schedule will be equal to (3).

Long jobs are scheduled to complete at time L (3) (see, e.g., Figure 14). Let V ′ ⊆ V
denote an independent set of G with |V ′| = βn. Since V ′ forms an independent set no
two vertices in V ′ are incident to the same edge.

For i = 1, . . . , |E|, observe that block B̄i can be scheduled in parallel with block
Bi. Moreover, we can schedule all the sequences from {PT(v) : v ∈ V ′} in parallel
with PT(a) and PT(b ). It follows that all the vertex jobs corresponding to the ver-
tices in V ′ can be scheduled in parallel with the operations of long jobs from blocks
PE(a), PT(a), PE(b ), PT(b ).

The operations from {PE(v) : v ∈ V \ V ′} can be scheduled in parallel with the op-
erations from PS(a), PS(b ) without delaying or interrupting the execution of the slack
parts of the long jobs (only the vertex job is preempted). Indeed, the total length of
the operations in {PE(v) : v ∈ V \ V ′} is at most 3(1 − β)nD, and each of these opera-
tions has length at least n4. Moreover, the length of the slack-part of the long jobs is
9(1 −β)nD and note that in the slack-part of the long jobs, during every 3n4 time units
that are spent to process operations from PS(a), PS(b ), we can schedule at least n4 time
units of an unscheduled operation from {PE(v) : v ∈ V \ V ′}, that is, n4 time units are
contiguously available on each machine (see Figure 14).
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Finally, the remaining operations from the (1 − β)n tail-parts {PT(v) : v ∈ V \ V ′},
that in total require (1 − β)nD time units, can be scheduled in parallel with PR(a) and
PR(b ) (recall that both PR(a) and PR(b ) require (1 − β)nD time units).

Soundness. We show the existence of a gap by proving that if the graph has no inde-
pendent set of size αn then the length of any schedule is at least L+�(nD) = (1+�(1))L.

For any given schedule, let t1 be the time at which operations from blocks PT(a) and
PT(b ) are completed. Let t2 be the time at which the first operation from PR(a) and PR(b )
starts. Let τ1,τ2 and τ3 be the fraction of T = n · D spent to schedule operations in
{PT(v) : v ∈ V} during time interval [0, t1), [t1, t2) and [t2,∞), respectively. We consider
the following cases.

Case 1. τ1 = α + c where c = �(1) is a positive constant.
Case 2. τ2 = �(1) is a positive constant.
Case 3. c = o(1) and τ2 = o(1).

For any 0 ≤ τ1 ≤ 1, note that there are at least τ1 · n vertex jobs that complete
their edge part before time t1. In (Case 1), since G has no independent set of size αn,
there are at least (τ1 − α)n = c · n = �(n) conflicting pairs of jobs (i.e., corresponding
to edges of adjacent pairs of vertices). It follows that there are two “conflicting” copies
of �(n) different blocks from {B̄i : i = 1, . . . , |E|} to be scheduled before time t1. Let
t0 be the time the last operation from blocks PE(a) and PE(b ) is completed. Observe
that t0 cannot be larger than |E|D + o(nD), otherwise we would be done since this
would create a schedule of length L + �(nD). For the same reason, we can assume
that t1 = L1 + o(nD), where L1 denotes the total length of the sequence (PE(a), PT(a)).
It follows that in time interval [t0, t1], machine m2 is occupied for t1 − t0 − o(nD) time
units, by operations of the tail-part of long jobs. By these observations and by using
Lemma 4.10, we have that at least �(nD) time units of these conflicting blocks cannot
be scheduled within time t1 without creating a schedule of length L + �(nD).

Now, let us consider (Case 2). Remember that we can assume that t1 = L1 + o(nD),
otherwise we are done. The latter assumption implies that “almost” all operations
from {PS(a), PS(b )}, that is, all but o(nD), are not yet scheduled at time t1. Let T12 be
the set of operations from {PT(v) : v ∈ V} that are scheduled during [t1, t2). Under (Case
2), we have that t2 − t1 = �(nD). Moreover, we can assume that with the exception of
o(nD) time units, at every time point in interval [t1, t2] an operation from {PS(a), PS(b )}
is executed. Note that sequences from {PT(v) : v ∈ V} have higher frequency than those
in {PS(a), PS(b )}. By using similar arguments as in the proof of Lemma 4.5, it is easy to
check that without delaying the long jobs we can only schedule a tiny fraction of T12,
that is, at most o(nD) time units. Moreover, additional time units of operations from
T12 can be processed in parallel with a long job only if a long job is delayed by at least
the same amount. Under Case 2, this implies a schedule of length L + �(nD).

Finally, in Case 3, we have τ1 + τ2 = α + o(1) and therefore τ3 = 1 − α − o(1) >
1 − β. This means that we have to schedule (β − α − o(1))nD time units more than the
space available to finish by time (3) (recall that the lengths of PR(a) and PR(b ) are both
(1 − β)nD). This creates a schedule of length L + �(nD).

5. CONCLUSIONS

Schuurman and Woeginger [1999] highlighted the poor understanding of the approx-
imability of job shop and flow shop scheduling as two of the ten most prominent open
problems in the area of approximation algorithms for NP-hard machine scheduling
problems.

In this article, we have resolved many of these questions by using strong hardness
results for coloring by Khot [2001] together with novel “gap” constructions that build
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upon previous work by Feige and Scheideler [2002]. The main results of our work can
be summarized as follows.

(1) The O((log lb)1+ε)-approximation algorithm [Czumaj and Scheideler 2000; Feige
and Scheideler 2002], where ε > 0 can be made arbitrarily close to 0, for acyclic job
shops and generalized flow shops is essentially the best possible.

(2) To improve the approximation guarantee for flow shops, one needs to (i) improve
the polynomial time computable lower bound on the optimal makespan and (ii) use
the fact that all jobs are processed on every machine.

(3) It is necessary to restrict both the machines and the number of operations per job
to obtain a PTAS for the job shop problem with makespan objective. That it is
sufficient follows from the work by Jansen et al. [2003].

With our current techniques we have been unable to address some shop scheduling
problems, whose approximability remains poorly understood. In this article, we list
three prominent problems, all of them with a significant “gap” between the best-known
approximation guarantees and inapproximability results.

(1) The job shop problem admits an O((log lb)2/(log log lb)2)-approximation algorithm
[Goldberg et al. 2001]. Our results imply that it is unlikely to approximate job
shops within a factor O((log lb)1−ε), for any ε > 0. To the best of our knowledge
no instances of the job shop problem are known with optimal makespan a ω(log lb)
factor away from the lower bound lb. This leaves open the possibility that job shop
scheduling might have an O(log lb)-approximation algorithm.

(2) Job shop scheduling with preemption admits an O(log m/ log log m)-approximation
algorithm [Bansal et al. 2006] and preemptive acyclic job shops admits an
O(log log lb)-approximation algorithm [Feige and Scheideler 2002], which is cur-
rently also the algorithm of choice for flow shops with preemption. The only neg-
ative result [Williamson et al. 1997], says that it is NP-hard to approximate these
problems within a factor less than 5/4. Moreover, it is still open whether or not the
preemptive job shop problem with two-machines (J2|pmtn|Cmax) admits a PTAS.

(3) The flow shop problem has an O((log lb)1+ε)-approximation algorithm, where ε >
0 can be made arbitrarily close to 0 [Czumaj and Scheideler 2000; Feige and
Scheideler 2002]. On the other hand, it is only known that it is NP-hard to approx-
imate flow shops within a factor less than 5/4 [Williamson et al. 1997]. This leaves
open the possibility that one can use the fact that all jobs have to be processed on
every machine to even obtain a constant factor approximation algorithm for flow
shop scheduling.
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