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Abstract. In 1966, Graham showed that a simple procedure called list scheduling yields a 2-
approximation algorithm for the central problem of scheduling precedence constrained jobs on iden-
tical machines to minimize makespan. To date this has remained the best algorithm, and whether
it can or cannot be improved has become a major open problem in scheduling theory. We address
this problem by establishing a quite surprising relation between the approximability of the consid-
ered problem and that of scheduling precedence constrained jobs on a single machine to minimize
weighted completion time. More specifically, we prove that if the single machine problem is hard to
approximate within a factor of 2− ε, then the considered parallel machine problem, even in the case
of unit processing times, is hard to approximate within a factor of 2−ζ, where ζ tends to 0 as ε tends
to 0. Combining this with Bansal and Khot’s recent hardness result for the single machine problem
gives that it is NP-hard to improve upon the approximation ratio obtained by Graham, assuming a
new variant of the unique games conjecture.
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1. Introduction. One of the first approximation algorithms with a worst-case
analysis can be traced back to 1966, when Graham [20] studied the following central
scheduling problem (known as P |prec|Cmax in standard scheduling notation [19]):
There is a set N of n jobs to be scheduled on m identical parallel machines. Each
machine can process at most one job at a time, and each job j ∈ N requires pj
uninterrupted units of processing on one of the machines. Jobs also have precedence
constraints between them that are specified by a partial order P onN , where (i, j) ∈ P
implies that job i must be completed before job j can be started. The goal is to find
a schedule that minimizes the makespan Cmax = maxj Cj , where Cj is the time at
which job j completes in the given schedule.

Arguably the simplest algorithm for many scheduling problems is the so-called
list scheduling procedure, where we order the jobs in a preference list and schedule
the first available job(s) from the list whenever a machine falls idle. In his seminal
paper [20], Graham showed that for P |prec|Cmax, the list scheduling procedure has
a worst-case performance guarantee of 2− 1/m.

Considering the special case with no precedence constraints, denoted by P ||Cmax,
Graham [21] later refined his analysis and showed that the list scheduling procedure
has a worst-case performance guarantee of 4/3−1/(3m), assuming the preference list is
obtained by arranging jobs according to nonincreasing processing times. Using more
complex techniques, Hochbaum and Shmoys [22] improved upon the 4/3 − 1/(3m)
approximation guarantee by giving a polynomial time approximation scheme for
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P ||Cmax. This gives a tight result since P ||Cmax is known to be strongly NP-hard
and hence does not admit a fully polynomial time approximation scheme [15]. We
remark that the problem where the number of machines is fixed, i.e., not part of the
input, is also resolved in terms of approximability: Graham [21] gave a polynomial
time approximation scheme which was later improved to a fully polynomial time ap-
proximation scheme by Sahni [32], and it is easily seen to be weakly NP-hard by a
reduction from partition. In summary, the considered problem is well understood in
the absence of precedence constraints.

Unfortunately, understanding the complexity in the presence of precedence con-
straints has turned out to be much more challenging and remains limited. The men-
tioned (2− 1/m)-approximation algorithm obtained by Graham in 1966 remains the
algorithm of choice for this problem. The last progress in understanding whether it
can or cannot be improved was made over 30 years ago by Lenstra and Rinnooy Kan
[29], who showed that it is NP-hard to approximate P |prec|Cmax within a factor less
than 4/3. Closing this gap is mentioned as “Open Problem 1” in Schuurman and
Woeginger’s list of ten open problems in scheduling theory [34]. Furthermore, the
computational complexity of finding an exact solution to Pm|prec, pj = 1|Cmax (the
problem with a fixed number m of machines and unit processing times), open problem
“OPEN8” from the original list of Garey and Johnson [16], is still open.

We remark that Du, Leung, and Young [11] showed that P2|prec|Cmax is strongly
NP-hard. However, P2|prec, pj = 1|Cmax is known to be polynomially solvable by
techniques from matching theory (Fujii, Kasami, and Ninomiya [13]). The best al-
gorithm for problem P3|prec, pj = 1|Cmax is a 4/3-approximation algorithm by Lam
and Sethi [27],1 who analyzed an algorithm by Coffman and Graham [9]. In a recent
paper [14], Gangal and Ranade showed that Graham’s (2 − 1/m)-approximation al-
gorithm can be improved to a (2 − 7

3m+1 )-approximation algorithm in case of unit
processing times and m > 3. Older results by Hu [23] and Garey et al. [17] give
polynomial time algorithms in the case of unit processing times and special cases of
precedence constraints. We refer the interested reader to the surveys [7] and [19] for
further information on these and other algorithms for special cases of P |prec|Cmax.

1.1. Our results. We make the first progress in settling the approximability of
P |prec|Cmax in the last 30 years: assuming a new, possibly stronger, version of the
unique games conjecture (introduced by Bansal and Khot [4]), we show that it is NP-
hard to approximate the scheduling problem P |prec|Cmax within any factor strictly
less than 2, even in the case of unit processing times. The result is obtained by estab-
lishing a quite surprising connection between P |prec|Cmax and the scheduling problem
of minimizing weighted completion time with precedence constraints (1|prec|∑wjCj)
studied in [4].

The problem 1|prec|∑wjCj is another classical scheduling problem that has
been studied since the 1970s [28, 29, 31, 35]. Despite much interest, there was, un-
til recently, a relatively large gap in our understanding of the approximability of
1|prec|∑wjCj . On the algorithmic side, several different techniques and linear pro-
gramming formulations have been used to obtain 2-approximation algorithms for it
(see, e.g., [6, 8, 30, 33]). On the hardness side, before 2007, only NP-hardness for the
exact problem was known [28, 29].

However, in contrast to P |prec|Cmax, several recent results have led to increased
understanding of 1|prec|∑wjCj . In a series of papers [1, 8, 10] it was in fact es-

1Also see [5] for a correction of an error in [27].
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tablished that 1|prec|∑wjCj is a special case of weighted vertex cover, a result ex-
ploited to obtain improved approximation algorithms for special cases of precedence
constraints [2]. Furthermore, new techniques have been used to obtain inapproxima-
bility results. Ambühl, Mastrolilli, and the author [3] used the quasi-random PCP due
to Khot [25] to rule out the possibility of a polynomial time approximation scheme.
More importantly, Bansal and Khot [4] settled the approximability of 1|prec|∑wjCj

assuming a certain conjecture. More specifically, they proved, assuming a new variant
of the unique games conjecture (see Hypothesis 1 described in the appendix), that it
is NP-hard to approximate the value of an optimal schedule to 1|prec|∑wjCj within
a factor of 2− ε for any ε > 0.

Our main result lets us profit from the hardness of 1|prec|∑wjCj to obtain
hardness of P |prec|Cmax.

Theorem 1. For any ε > 0 and ζ ≥ ζ(ε), where ζ(ε) tends to 0 as ε tends to 0,
if 1|prec|∑wjCj has no (2 − ε)-approximation algorithm, then P |prec|Cmax has no
(2− ζ)-approximation algorithm, even in the case of unit processing times.

The relation between the approximability of 1|prec|∑wjCj and that of P |prec|
Cmax is interesting on its own. In particular, even if the new variant of the unique
games conjecture is false, it might very well be that 1|prec|∑wjCj (and thus P |prec|
Cmax by the above theorem) is NP-hard to approximate within a factor 2− ε for any
ε > 0. However, with our current techniques ε must be significantly smaller than ζ.
Consequently, a strong hardness result (close to 2) is needed for 1|prec|∑wjCj to
obtain a good hardness result for P |prec|Cmax.

Proof overview. The proof is completed in two steps. First, in section 2, we show
that if 1|prec|∑wjCj has no (2 − ε)-approximation algorithm, then the following
bipartite ordering problem is also hard: given an n by n bipartite graph G(V,W,E),
determine for a small ζ > 0 whether the following hold:

• (YES case): G has an ordering π : V �→ {1, . . . n} such that for i = 1, 2, . . . , n,
the set

{w ∈ W : max
{v,w}∈E

π(v) ≤ i}

has size at least i− ζn.
• (NO case): For each permutation π : V �→ {1, . . . n}, the set

{w ∈ W : max
{v,w}∈E

π(v) ≤ (1− ζ)n}

has size at most ζn.
Note that the conditions say that in the YES case there are at least i− ζn vertices in
W such that all their neighbors are among the first i vertices in V according to the
ordering, whereas in the NO case very few vertices in W (at most ζn) are such that all
their neighbors are among the first (1− ζ)n vertices in V according to any ordering.
The proof of the hardness of this problem is based on some new observations together
with several older results regarding the structure of the problem 1|prec|∑wjCj .

Second, in section 3, we provide a reduction from the bipartite graph problem
to P |prec|Cmax. The intuition of the reduction is the following. Let δ > ζ be a
small constant, and let G(V,W,E) be an instance of the bipartite ordering problem.
Consider the instance I of P |prec|Cmax with (1−δ)n machines, a job with processing
time 1 for each vertex in G, and a precedence constraint from v ∈ V to w ∈ W if
{v, w} ∈ E. We will show that in the YES case there is a schedule of length 3, whereas
no schedule has length less than 4 in the NO case.
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On the one hand, if G is a YES instance, then there is a permutation π so that
the set

W1 = {w ∈ W : max
{v,w}∈E

π(v) ≤ (1− δ)n}

has size at least (1− δ)n− ζn ≥ (1− 2δ)n. This means that there is a schedule of I
that

• completes the jobs that corresponds to the first (according to π) (1 − δ)n
vertices in V at time 1;

• schedules the remaining jobs in V (at most δn many) and (1 − 2δ)n jobs in
W1 during time interval [1, 2]; and

• finally completes the remaining jobs in W at time 3.
On the other hand, if G is a NO instance, then at most a ζ fraction of the jobs

in W can be scheduled before a fraction (1 − ζ) of the jobs in V are completed. By
the selection of m, a schedule has completed at most a fraction 1 − δ < 1 − ζ of the
jobs in V at time 1. Therefore, any schedule will have completed only a fraction ζ of
the jobs in W at time 2. It follows that any schedule will need to schedule at least
(1 − ζ)n > (1 − δ)n = m of the W -jobs from time 2 and will thus have makespan at
least 4.

To amplify this “gap,” we form a new instance I ′ that consists of several copies of
I that are related by precedence constraints. For a hardness factor close to 2, a careful
balance between the number of copies and the number of machines is needed.

The above theorem together with the result of Bansal and Khot [4] gives us the
following corollary.

Corollary 1. Assuming a new variant of the unique games conjecture (Hypoth-
esis 1), it is NP-hard to approximate P |prec|Cmax within a factor (2 − ζ) for any
ζ > 0.

2. Bipartite ordering and scheduling problem 1|prec|∑wjCj. Problem
1|prec|∑wjCj is the problem of scheduling a set N of n jobs on a single machine,
which can process at most one job at a time. Each job j ∈ N has a processing
time pj and a weight wj . Jobs also have precedence constraints between them that
are specified in the form of a partial order P on N . The goal is to find a schedule
that minimizes

∑
j∈N wjCj , where Cj is the time at which job j is completed in the

given schedule. In this section we shall see that if 1|prec|∑wjCj has no (2 − ε)-
approximation algorithm for some ε > 0, then there is no polynomial algorithm that
distinguishes between certain bipartite graphs (see Theorem 2). This will then be
used to prove our main result in section 3.

Before presenting the result of this section we need the following definition.
Definition 1. For an n by n bipartite graph G = (V,W,E) and a permutation

π : V �→ {1, . . . , n}, define
V π
i = {v ∈ V : π(v) ≤ i} for i = 1, . . . , n,

Wπ
i = {w ∈ W : max{v,w}∈E π(v) ≤ i} for i = 0, 1, . . . , n.

Theorem 2. For any ε > 0 and ζ such that ζ2 > 2ε, if no polynomial algorithm
approximates 1|prec|∑wjCj within a factor of (2 − ε), then there is no polynomial
algorithm that distinguishes between n by n bipartite graphs

• that have a permutation π of V that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n
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• and those for which each permutation π of V satisfies

|Wπ
(1−ζ)n| ≤ ζn.

Proof. Woeginger [36] proved that the general case of 1|prec|∑wjCj is no harder
to approximate than the following bipartite case:

1. The set N of jobs are partitioned into two sets A and B so that the set P of
precedence constraints is a subset of A×B.

2. The jobs in A have processing time 1 and weight 0, and the jobs in B have
processing time 0 and weight 1.

We can thus restrict our attention to such bipartite instances. Structural results
by Sidney [35] and algorithmic results by Lawler [28] imply that an α-approximation
algorithm for bipartite instances that are so-called non–Sidney-decomposable gives an
α-approximation algorithm for all bipartite instances.2 A bipartite instance is non–
Sidney-decomposable if for each A′ ⊆ A the number of jobs in B with no predecessors

in A\A′ is at most |A′|
|A| |B|. We can thus further restrict ourselves to bipartite instances

that are non–Sidney-decomposable.
When analyzing non–Sidney-decomposable bipartite instances it will be conve-

nient to work with the so-called two-dimensional (2D) Gantt chart, first introduced
by Eastman, Even, and Isaacs [12] and later revived by Goemans and Williamson [18]
to give elegant proofs for various results related to 1|prec|∑wjCj . In a 2D Gantt
chart, we have a horizontal axis of processing time and a vertical axis of weight. For
a scheduling instance of the above form, the chart starts at point (0, |B|) and ends
at point (|A|, 0). A job j is represented by a rectangle of length pj and height wj .
Hence, a job of A is represented by a horizontal line of length 1, and a job of B is
represented by a vertical line of length 1. Any schedule is represented in the 2D Gantt
chart by placing the corresponding rectangles of the jobs in the order of the schedule
such that the startpoint of a job is the endpoint of the previous job (or (0, |B|) for the
first job). The value

∑
j wjCj of a schedule is then the area under the “work line”

(see the shaded area in Figure 1(a)).
Recall that a bipartite instance is non–Sidney-decomposable if for each A′ ⊆ A

the number of jobs in B with no predecessors in A \ A′ is at most |A′|
|A| |B|. It follows

that any schedule for such an instance will always have its work line above the diagonal
in the 2D Gantt chart. Hence, any schedule of a non–Sidney-decomposable bipartite
instance has value at least |A||B|/2. This was discovered independently in the general
case by Chekuri and Motwani [6] and Margot, Queyranne, and Wang [30] and was
later shown by Goemans and Williamson [18] using 2D Gantt charts.

As non–Sidney-decomposable bipartite instances are the hardest instances to ap-
proximate and any schedule of such an instance with job sets A and B has value at
least |A||B|/2, we have the following. If there is no (2−ε)-approximation algorithm for
1|prec|∑wjCj , then there is no polynomial time algorithm that distinguishes between
non–Sidney-decomposable bipartite instances with value 1+2ε

2 |A||B| and those with
value (1−ε)|A||B| for any ε > 0. Indeed, suppose there exists a polynomial time algo-
rithm A that outputs “YES” if the scheduling instance has value at most 1+2ε

2 |A||B|
and outputs “NO” if the scheduling instance has value at least (1 − ε)|A||B|. Then
the following is a (2− ε)-approximation algorithm: given a non–Sidney-decomposable
bipartite instance with job sets A and B, run A on the instance and

2We remark that we have restricted ourselves to bipartite instances of 1|prec|∑wjCj , but the
results by Sidney and Lawler hold for general instances (see [18] for a nice exposition of these results).
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(0, |B|)

(|A|, 0)

Weight

Processing time

(0, 0)

work line

Weight

Processing time

(0, 0)

(i, nB − σ(i))

(a) (b)

≥ ζnB

≥ ζnA

f(x) = nB − x · nB

nA
+ ζnB

(nA, 0)

(0, nB)

Fig. 1. (a) An example of a 2D Gantt diagram. (b) An illustration of the argument used to
prove Claim 1(a).

• if A outputs “YES,” then approximate the value of the instance to be (1 −
ε)|A||B| (since any schedule has value at least |A||B|/2, this is a (2 − 2ε)-
approximation);

• else approximate the value of the instance to be |A||B| (since any schedule
then has value at least 1+2ε

2 |A||B|, this is a 2
1+2ε ≤ (2 − ε)-approximation).

Now let I be a non–Sidney-decomposable bipartite instance with the jobs par-
titioned into sets A and B and precedence constraints P . Let nA = |A|, nB = |B|,
and n = nAnB. With I we associate an n by n bipartite graph G(V,W,E), where
there are nB vertices in V for each a ∈ A referred to as Va, nA vertices in W for each
b ∈ B referred to as Wb, and an edge between all vertices in Va and all vertices in Wb

if (a, b) ∈ P . In other words, G is the undirected graph of the precedence constraints
where each job in A has been copied nB times and each job in B has been copied nA

times. The following claim completes the proof of the theorem.
Claim 1. For any ζ > 0 such that ζ2 > 2ε,
(a) if I has a schedule of value at most 1+2ε

2 n, then G has a permutation π of V
that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n;

(b) if all schedules of I have value at least (1 − ε)n, then each permutation π of
V satisfies

|Wπ
(1−ζ)n| ≤ ζn.

Proof of Claim 1. (a) Let σ be a schedule of I with value at most 1+2ε
2 n. For

i = 0, 1, 2, . . . , nA, we let σ(i) denote the number of jobs in B that have been scheduled
when at most i jobs in A have been completed. Now suppose toward contradiction
that there exists an integer i = 1, 2, . . . , nA such that σ(i) ≤ inB

nA
− ζnB, and consider

the 2D Gantt chart of σ. As σ will have its work line above both the diagonal and
the point (i, nB − σ(i)) on the dotted line (see Figure 1(b)), the value of σ will be at
least

nB · nA/2 + ζnA · ζnB/2 =
1 + ζ2

2
n,
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which is, by the choice of ζ, strictly greater than 1+2ε
2 n. This is a contradiction since

we assumed the value of σ to be at most 1+2ε
2 n. Hence, for all i = 1, 2, . . . , nA we

have σ(i) > inB

nA
− ζnB. Now let π be a permutation that orders all vertices in Va

before the vertices in Va′ if σ schedules a before a′. Note that by the definition of G
and π

|Wπ
i·nB

| ≥ nA · σ(i) for i = 1, . . . , nA.

It follows that for i = 1, 2, . . . , n

|Wπ
i | ≥ nA · σ(i/nB) = i− ζnAnB = i− ζn.

We remark that we assumed for simplicity that i/nb evaluates to an integer. However,
it is easy to see that a more careful analysis with �i/nb	 will not have any impact on
the final result.

(b) Assume all schedules of I have value at least (1 − ε)n and suppose toward
contradiction that there is a permutation π of V that satisfies |Wπ

(1−ζ)n| > ζn. Let σ
be a schedule of I such that

1. for each a, a′ ∈ A, σ schedules a before a′ if maxv∈Va π(v) ≤ maxv′∈Va′ π(v
′),

2. and a job in B is scheduled as soon as its predecessors are finished.
Since |Wπ

(1−ζ)n| > ζn, at least ζnB jobs in B are scheduled when at most (1 − ζ)nA

jobs are completed in σ. It follows that the value of σ is at most

(1 − ζ)nA · ζnB + nA · (1− ζ)nB = (1− ζ2)n.

This is a contradiction since ζ2 > 2ε, and hence (1 − ζ2) < (1− ε).
The proof of the above claim completes the proof of Theorem 2.

3. Proof of main result. Here, we shall use Theorem 2 to establish the con-
nection between 1|prec|∑wjCj and P |prec|Cmax. Given an n by n bipartite graph
G(V,W,E) and an integer d, we will construct an instance I(d) of P |prec, pj = 1|Cmax

such that for a small ζ > 0 that depends only on d, the following hold:
• (Completeness) If G has a permutation π of V that satisfies

|W π
i | ≥ i− ζn for i = 1, 2, . . . , n,

then I(d) has a schedule of makespan d+ 1.
• (Soundness) If each permutation π of V satisfies

|W π
(1−ζ)n| ≤ ζn,

then any schedule of I(d) has makespan 2d.
Theorem 1 then follows by combining Theorem 2 with the above reduction. We
first present the reduction in section 3.1, followed by the completeness and soundness
analyses in sections 3.2 and 3.3, respectively.

3.1. Construction. The final instance I(d) will consist of several copies of a set
of precedence constrained jobs. This set will be referred to as the “building block”
and is actually the only part of the construction that depends on G. The number of
copies of the building block is carefully selected, and precedence constraints between
the copies are added to obtain the final instance I(d). We first present the building
block, and then we set the parameters that control the number of copies of the building
block and the precedence constraints that are added between those copies. Finally,
we present the instance I(d).
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Building block. Let B denote the building block. The set of jobs is V ∪W , and
there is a precedence constraint from v ∈ V to w ∈ W if {v, w} ∈ E. In addition, the
jobs in V, referred to as V -jobs, have processing time 1, and the jobs in W, referred
to as W -jobs, have processing time 0. We remark that the jobs with processing time
0—the W -jobs—are superfluous in the sense that removing them will not change the
length of any schedule. Instead, they are included because they make the exposition
much cleaner.

Parameters. Before describing instance I(d) we need to define some parameters.
Select γd = 1

10 , and let

γ�−1 = γ10
� and δ�+1 = 1/γ5

� for 	 = d, d− 1 . . . , 1.

Finally, we select

(1) ζ = γ10
0 .

Note that δ2, . . . , δd+1, 1/ζ, 1/γ0, . . . , 1/γd are all integers that satisfy ζ � γ0 �
γ1 � · · · � γd and δ2 � δ3 � · · · � δd+1. The parameters are selected such that the
following bounds hold (they will be used in the completeness and soundness analyses).

Lemma 1. For each 	 = 1, . . . , d

(1− 4γ�−1)
δ�+1 ≥ 1− 2γ�,(2) (

1− γ�
4

)δ�+1 ≤ γ�/2.(3)

Proof. The bounds follow straightforwardly from Bernoulli’s inequality:

1 + nx ≤ (1 + x)n for all x ∈ [−1,∞] and for all n = 1, 2, . . . .

Indeed, by Bernoulli’s inequality and the selection of parameters we have

(1− 4γ�−1)
δ�+1 ≥ 1− 4γ�−1 · δ�+1 = 1− 4γ10

� · 1/γ5
� ≥ 1− 2γ�.

Similarly,

(
1− γ�

4

)δ�+1

=

(
4/γ� − 1

4/γ�

)δ�+1

=
1(

1 + 1
4/γ�−1

)δ�+1
,

which by Bernoulli’s inequality is at most

1

1 +
δ�+1

(4/γ�−1)

=
1

1 + 1
γ5
� (4/γ�−1)

≤ γ�/2.

Instance. Instance I(d) has m machines (selected below (4)) and consists of sev-
eral copies of B related to each other by precedence constraints. Conceptually, it will
be useful to partition these copies into d layers. The copies in layer 	 = 1, 2, . . . , d
will then in turn be subdivided into several groups. We will denote the set of groups
in layer 	 by L�. We continue by a formal definition of the layers and will then define
the precedence constraints between the layers (see also Figure 2 for an example of the
construction):
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v1 v2

w1 w2 Layer 1 consisting
of n = 3 groups

Layer 2 consisting of
27 groups. One for
each i ∈ {1, 2, 3} and
each multi-set of
δ2 = 2 groups in layer 1

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

B(1,1) B(1,2) B(1,3)

B(2,1,{B(1,1),B(1,2)}) B(2,1,{B(1,2),B(1,2)}) B(2,2,{B(1,2),B(1,3)}) B(2,3,{B(1,2),B(1,3)})

Fig. 2. An example of the groups in I(2) with δ2 = 2 arising from the bipartite graph with V =
{v1, v2, v3}, W = {w1, w2, w3}, and E = {{v1, w1}, {v2, w2}, {v3, w3}, {v3, w2}}. Each rectangle
represents a group that contains a layer dependent number of copies of the building block. The
V -jobs and W -jobs are depicted in gray and white, respectively.

• Layer 1 consists of a set

L1 = {B(1,i) : i ∈ {1, . . . , n}}
of |L1| = n groups and each group B(1,i) ∈ L1 contains (1 + γ1)

m
n·|L1| copies

of B.
• Layer 	 = 2, 3, . . . , d consists of a set

L� =

⎧⎨
⎩B(�,i,X) :

i ∈ {1, . . . , n},
X is a multiset consisting of
δ� groups from L�−1

⎫⎬
⎭

of |L�| = n·|L�−1|δ� groups and each groupB(�,i,X) ∈ L� contains (1+γ�)
m

n·|L�|
copies of B.

Note that the number of V -jobs and the number of W -jobs in layer 	 = 1, . . . , d are
both (1 + γ�)m.

We are now ready to define the precedence constraints between the different layers.
For a group B(�,i,X) ∈ L� with 	 ≥ 2, there are precedence constraints from all the
jobs that correspond to wi in the groups L�−1 ∩X to all the jobs in B(�,i,X).

Finally, we select the number of machines so as to guarantee that (1 + γ�)
m

n|L�| is
an integer for 	 = 1, . . . , d. As |L�| divides |Ld| for 	 = 1, . . . , d, we let

(4) m =

(
d∏

i=0

1

γi

)
· n · |Ld| =

(
d∏

i=0

1

γi

)
· n · n1+

∑d
i=2

∏d
j=i δj .

Note that m is a polynomial in n whose degree depends only on d, and since layer
	 = 1, 2, . . . , d contains (1 + γ�)m V -jobs and (1 + γ�)m W -jobs, the construction is
polynomial in n for any fixed d.

At first sight the construction and the structure of the precedence constraints be-
tween different layers might seem unnecessarily complex compared to a more intuitive
construction where, for example, the jobs of a block in layer 	 depend only on the
jobs of a single block in layer 	− 1. The reason for the more complex construction is
to avoid “short” schedules that ignore the structure of the bipartite graph by simply
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scheduling the copies of the building block one by one greedily. Indeed, the selection
of the precedence constraints between layers guarantees that a group B(�,i,X) can be
scheduled only after all occurrences of wi in the groups in X are completed. The
selection of δ� (the size of X) and γ�−1 (proportional to the number of jobs of layer
	 − 1 that can be scheduled during one time step) then guarantees that any “short”
schedule must exploit the structure of the given bipartite graph, as needed for the
soundness analysis.

3.2. Completeness. Let π be a permutation of V that satisfies

(5) |W π
i | ≥ i− ζn for i = 1, 2, . . . , n,

and let

ti = �(1− γi)n	 for i = 1, 2, . . . , d.

The key lemma for the completeness is the following.
Lemma 2. For each 	 = 1, . . . , d there exists a schedule σ� of all the jobs in layers

1, . . . , 	 satisfying the following for each k = 1, . . . , 	:
(i) in at least a fraction 1 − 4γk−1 of layer k’s groups, all jobs corresponding to

the vertices in V π
tk ∪Wπ

tk are scheduled during time interval [k − 1, k];
(ii) the set of remaining jobs of layer k that were not scheduled during [k − 1, k]

contains at most 4γkm V -jobs and is scheduled during time interval [k, k+1].
As σd will schedule all the jobs and have makespan d + 1, this will imply the

completeness analysis.
Proof. We proceed by induction on 	.
Base case. For 	 = 1, consider schedule σ1 defined as follows.
During time interval [0, 1], σ1 first schedules the jobs in layer 1 that correspond

to the vertices in V π
t1 followed (at time 1) by the jobs that correspond to the vertices

in Wπ
t1 .
During time interval [1, 2], σ1 first schedules the remaining V -jobs of layer 1

followed (at time 2) by the remaining W -jobs of layer 1.
Before showing that σ1 satisfies conditions (i) and (ii), we prove that σ1 is a

feasible schedule, i.e., that no precedence constraints are violated and σ1 does not
schedule more than m jobs at any time. Note that there might only be a precedence
constraint between two jobs in layer 1 if they correspond to two vertices v ∈ V and
w ∈ W with {v, w} ∈ E. By Definition 1 there are no edges between the vertices in
V \V π

t1 and the vertices in Wπ
t1 . It follows that no precedence constraints are violated

by σ1. To show that σ1 is feasible, it remains to verify that σ1 does not schedule more
jobs than machines at any time. As the W -jobs have 0 processing time, they can be
scheduled sequentially without increasing the makespan. It is thus sufficient to verify
that no more than m V -jobs are scheduled at any time. During time interval [0, 1],
σ1 schedules a fraction t1/n ≤ (1 − γ1) of the V -jobs. The total number of V -jobs
scheduled during [0, 1] is thus at most (1− γ1)(1 + γ1)m = (1− γ2

1)m ≤ m. Similarly,
during time interval [1, 2], σ1 schedules the remaining 1− t1/n ≤ 2γ1 fraction of the
V -jobs. The total number of V -jobs scheduled during [1, 2] is thus at most 2γ1m.

We shall now see that σ1 satisfies conditions (i) and (ii). Since we have proved
that the remaining jobs scheduled by σ1 during time interval [1, 2] contain at most
2γ1m V -jobs, we know that σ1 satisfies condition (ii) in the induction hypothesis. To
see that σ1 satisfies condition (i), it is sufficient to observe that in all of layer 1’s
groups, all jobs corresponding to the vertices in V π

t1 ∪Wπ
t1 are scheduled during time

interval [0, 1]. This completes the proof of the base case.
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Inductive step. Suppose we already defined schedules σ1, σ2, . . . , σ� that satisfy
conditions (i) and (ii) for 	 < d. We shall now define a schedule σ�+1 that schedules
all jobs in layers 1, 2, . . . , 	+ 1 and satisfies conditions (i) and (ii).

Before defining schedule σ�+1 we need to introduce some new notation. A group
B ∈ L� is called early if σ� has completed all the jobs in B that correspond to the
vertices in V π

t�
∪Wπ

t�
at time 	. Let

Lno-pre
�+1 =

{
B(�+1,i,X) ∈ L�+1 :

wi ∈ Wπ
t� and

each B ∈ X is early

}
.

Note that Lno-pre
�+1 is defined so that σ� has scheduled all the predecessors of the V -jobs

in Lno-pre
�+1 at time 	.

We are now ready to define σ�+1. Schedule σ�+1 is an extension of σ� in the sense
that σ�+1 schedules all the jobs in layers 1, 2, . . . , 	 in the same way as σ�. The jobs
in layer 	+ 1 are scheduled by σ�+1 as follows.

During time interval [	, 	 + 1], σ�+1 first schedules the jobs in Lno-pre
�+1 that cor-

respond to the vertices in V π
t�+1

followed (at time 	 + 1) by the jobs in Lno-pre
�+1 that

correspond to the vertices in Wπ
t�+1

.

During time interval [	 + 1, 	 + 2], σ�+1 first schedules the remaining V -jobs of
layer 	+ 1 followed (at time 	+ 2) by the remaining W -jobs of layer 	 + 1.

As in the base case we start by showing that σ�+1 is feasible. The proof that σ�+1

satisfies conditions (i) and (ii) will then follow in a straightforward manner.

To show that σ�+1 is feasible, we need to prove that no precedence constraints are
violated and the number of scheduled jobs does not exceed the number of machines
m at any time.

We start by showing that no precedence constraints are violated. Since σ� does
not violate any precedence constraints between jobs of layers 1, 2, . . . , 	, neither does
σ�+1. Now consider the precedence constraints where at least one job is in layer 	+1.
As already noted, σ� and thus σ�+1 has finished all the predecessors of the V -jobs
in Lno-pre

�+1 at time 	. Similarly, by condition (ii) in the induction hypothesis, σ� and
thus σ�+1 has finished all the predecessor of all V -jobs in layer 	+ 1 at time 	+ 1. It
follows that no precedence constraint from a job in a different layer than 	 + 1 to a
job in layer 	+1 is violated. Now consider the precedence constraints between jobs in
layer 	+1. As in the base case, there might only be a precedence constraint between
two jobs in the same layer if they correspond to two vertices v ∈ V and w ∈ W with
{v, w} ∈ E. By Definition 1 there are no edges between the vertices in V \ V π

t�+1
and

the vertices in Wπ
t�+1

. Hence, no precedence constraints are violated.

We continue by verifying that σ�+1 does not schedule more than m jobs at any
time. As noted in the base case, it is sufficient to verify that no more than m V -jobs
are scheduled at any time. Since σ�+1 and σ� do not differ during time interval [0, 	],
we need only to verify σ�+1 during time intervals [	, 	 + 1] and [	 + 1, 	 + 2]. By
condition (ii) in the induction hypothesis, σ� and thus σ�+1 schedules at most 4γ�m
V -jobs from layer 	 during time interval [	, 	+1]. In addition σ�+1 schedules a fraction

t�+1

n · |Lno-pre
�+1 |
|L�+1| of the V -jobs from layer 	 + 1 during [	, 	 + 1]. The total number of

V -jobs scheduled by σ�+1 during [	, 	+ 1] is thus at most

(6) 4γ�m+
t�+1

n
· |L

no-pre
�+1 |
|L�+1| · (1 + γ�+1)m.
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During interval [	 + 1, 	 + 2], σ�+1 schedules the remaining V -jobs from layer 	 + 1.
The number of such jobs is thus

(7)

(
1− t�+1

n
· |L

no-pre
�+1 |
|L�+1|

)
(1 + γ�+1)m.

The following claim completes the proof that σ�+1 is feasible.
Claim 2. We have that (6) ≤ m and (7) ≤ 4γ�+1m.

Proof of Claim 2. We start with proving (6) ≤ m. As
|Lno-pre

�+1 |
|L�+1| ≤ 1 and

t�+1

n ≤
1− γ�+1, we have that

(6) ≤ 4γ�m+ (1− γ�+1)(1 + γ�+1)m ≤ m,

where we used that 4γ� = 4γ10
�+1 ≤ γ2

�+1 for the last inequality.

To prove (7) ≤ 4γ�+1m we need to bound the size of
|Lno-pre

�+1
|

|L�+1| . Recall that

Lno-pre
�+1 =

{
B(�+1,i,X) ∈ L�+1 :

wi ∈ Wπ
t� and

each B ∈ X is early

}
.

We can thus write
|Lno-pre

�+1 |
|L�+1| as

Pr
B(�+1,i,X)∈L�+1

[wi ∈ Wπ
t� and each B ∈ X is early],

which in turn, since |X | = δ�+1, equals

|Wπ
t� |

|W | ·
(

Pr
B∈L�

[B is early]

)δ�+1

.

By condition (i) in the induction hypothesis,

Pr
B∈L�

[B is early] ≥ 1− 4γ�−1,

and by assumption (5) and the fact that ζ = γ10
0 � γ� we have

|Wπ
t�
|

|W | ≥ �(1− γ�)n	 − ζn

n
≥ 1− 2γ�.

Substituting in these bounds gives us that

|Lno-pre
�+1 |
|L�+1| ≥ (1− 2γ�) · (1− 4γ�−1)

δ�+1

≥ (1− 2γ�)
2 (by (2) in Lemma 1)

≥ 1− 4γ�.

We are now ready to prove (7) ≤ 4γ�+1m:

(7) =

(
1− t�+1

n
· |L

no-pre
�+1 |
|L�+1|

)
(1 + γ�+1)m

≤ (1− (1− 2γ�+1) · (1− 4γ�)) (1 + γ�+1)m

= (4γ� + 2γ�+1 − 8γ�γ�+1)(1 + γ�+1)m

≤ (4γ� + 2γ�+1)(1 + γ�+1)m

= (4γ10
�+1 + 2γ�+1)(1 + γ�+1)m

≤ 4γ�+1m (since γ�+1 ≤ 1/10).
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We have thus proved that (6) ≤ m and (7) ≤ 4γ�+1m, as required.
We continue by proving that σ�+1 satisfies conditions (i) and (ii) of the induction

hypothesis. Since σ�+1 is an extension of σ�, conditions (i) and (ii) are satisfied for k =
1, 2, . . . , 	. We continue by verifying the induction hypothesis for k = 	+1. To see that
σ�+1 satisfies condition (i), note that σ�+1 schedules all jobs in Lno-pre

�+1 that correspond
to the vertices in V π

t�+1
∪ Wπ

t�+1
during time interval [	, 	 + 1]. As PrB∈L�+1

[B ∈
Lno-pre
�+1 ] ≥ 1 − 4γ� (see proof of the claim above), σ�+1 satisfies condition (i). Now

consider condition (ii). Obviously σ�+1 schedules all the remaining jobs of layer 	+1
during time interval [	+1, 	+2]. Furthermore, as proved above, the set of remaining
jobs contains (7) V -jobs with (7) ≤ 4γ�+1m.

By the above arguments the schedule σ�+1 is feasible and satisfies conditions (i)
and (ii). This concludes the inductive step and the completeness analysis.

3.3. Soundness. By assumption we have that each permutation π of V satisfies

(8) |Wπ
(1−ζ)n| ≤ ζn.

Fix any feasible schedule σ. The key lemma for soundness is the following.
Lemma 3. For each 	 = 1, . . . , d, schedule σ has at time 2 · (	 − 1) completed at

most a fraction γ�−1 of the V -jobs in layer 	.
As there are (1 + γd)m V -jobs in layer d and (1 + γd) − γd−1(1 + γd) = 1 +

γd − γ10
d (1 + γd) > 1, this implies that the schedule must have makespan at least

2(d− 1) + 2 = 2d.

Proof. We proceed by induction on 	.

Base case. For 	 = 1 the induction hypothesis is obviously true, because σ has
completed no jobs at time 0.

Inductive step. Suppose we already proved the induction hypothesis for 1, 2, . . . , 	
for 	 < d. We shall now prove that at time 2	, σ has completed at most a fraction γ�
of the V -jobs in layer 	+ 1.

Let t = 2(	−1). For each i = 1, . . . , n and each B ∈ L�, let X
(B)
i be the indicator

variable defined as

X
(B)
i =

⎧⎪⎨
⎪⎩

1
if at time t+ 1, σ has completed all the jobs
in group B that correspond to wi ∈ W ,

0 otherwise.

Moreover, for i ∈ {1, . . . , n}, let Xi denote the indicator variable that takes value 1 if

EB∈L�
[X

(B)
i ] ≥ 1− γ�

4 and 0 otherwise.

Claim 3. We have Ei[Xi] ≤ 4ζ.
Proof of Claim 3. Suppose toward contradiction that Ei[Xi] > 4ζ, and hence there

are more than a fraction 4ζ of the indicator variables that equal 1. Let a = �4ζn� and
assume without loss of generality that X1 = X2 = · · · = Xa = 1. By the definition of
Xi’s,

Ei∈[a],B∈L�
[X

(B)
i ] ≥ 1− γ�

4
.

It follows that

Pr
B∈L�

[Ei∈[a][X
(B)
i ] ≥ 1/2] ≥ 1− γ�

2
.
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By letting the expectation be over [n] instead of [a],

Pr
B∈L�

[Ei∈[n][X
(B)
i ] ≥ 2ζ] ≥ 1− γ�

2
.

Call a group B ∈ L� good if Ei∈[n][X
(B)
i ] ≥ 2ζ. By the inequality above, at least a

fraction 1− γ�

2 of the groups in L� are good.

Now consider a good group B ∈ L�. As Ei∈[n][X
(B)
i ] ≥ 2ζ, σ schedules all

jobs in B that correspond to a subset W ′ ⊆ W of vertices with |W ′| ≥ 2ζn. By
assumption (8), σ must have completed more than a fraction 1 − ζ of the V -jobs in
B before all jobs corresponding to W ′ are scheduled. Hence, we can conclude that,
for each good block, σ has completed at least a fraction 1− ζ of the V -jobs. As layer
	 consists of (1 + γ�)m V -jobs and at least a fraction 1 − γ�/2 of them belong to
good groups, the total number of the V -jobs completed by σ at time t+ 1 is at least
(1+γ�)(1−γ�/2)(1− ζ)m. However, this leads to the following contradiction. By the
induction hypothesis, σ has completed at most a fraction γ�−1 of the V -jobs in layer
	 at time t. Thus during time interval [t, t+1], the number of V -jobs σ must schedule
is at least

(1 + γ�)(1 − γ�/2)(1− ζ)m− γ�−1(1 + γ�)m,

which is strictly greater than m since (1 + γ�)(1 − γ�/2) ≥ 1 + γ�/4, ζ = γ10
0 � γ�,

and γ�−1 = γ10
� � γ�. This is a contradiction.

Without loss of generality, let X1, X2, . . . , Xk be the indicator variables with
value 1. By the claim above we have that k ≤ 4ζ. A group B(�+1,i,X) ∈ L�+1 can be
scheduled at time t + 1 if all of its predecessors have been completed at that time.

All predecessors of B(�+1,i,X) have been completed at time t+ 1 if X
(B)
i = 1 for each

B ∈ X . We can thus write the fraction of groups in L�+1 for which all predecessors
have been completed at time t+ 1 as

(9) Pr
B(�+1,i,X)∈L�+1

[for all B ∈ X,X
(B)
i = 1],

which is at most the sum of PrB(�+1,i,X)∈L�+1
[i ≤ k] and PrB(�+1,i,X)∈L�+1

[i > k and

for all B ∈ X,X
(B)
i = 1]. As k ≤ 4ζ and EB [X

(B)
i ] < 1 − γ�

4 for i > k, we have
that (9) is bounded from above by

4ζ +
(
1− γ�

4

)|X|
= 4ζ +

(
1− γ�

4

)δ�+1

≤ 4ζ + γ�/2 (by (3) in Lemma 1)

≤ γ� (since ζ = γ10
0 < γ�/8).

Hence, σ has at time t+ 2 = 2	 completed at most a fraction γ� of the V -jobs in
layer 	+ 1. This concludes the inductive step and the soundness analysis.

Appendix. The new stronger unique games conjecture. Although we
do not directly use the new stronger version of the unique games conjecture, we
define it here for the sake of completeness. An instance of unique games L =
(G(V,W,E), [n], {πv,w}(v,w)) consists of a regular bipartite graph G(V,W,E) and a
set [n] of labels. For each edge (v, w) ∈ E there is a constraint specified by a per-
mutation πv,w : [n] �→ [n]. The goal is to find a labeling 	 : (V ∪ W ) �→ [n] so
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as to maximize val(	) := Pre∈E [	 satisfies e], where a labeling 	 is said to satisfy
an edge e = (v, w) if 	(v) = πv,w(	(w)). For a unique game instance L, we let
OPT (L) = max�:V ∪W �→[n] val(	). The now famous unique games conjecture that has
been extensively used to prove strong hardness of approximation results can be stated
as follows.

Conjecture 1 (see [24]). For any constants ζ, γ > 0, there is a sufficiently large
constant n = n(ζ, γ) such that, for unique game instances L with label set [n], it is
NP-hard to distinguish between OPT (L) ≥ 1− ζ and OPT (L) ≤ γ.

To address the scheduling problem 1|prec|∑wjCj , Bansal and Khot introduced
the following variant of the unique games conjecture.

Hypothesis 1 (see [4]). For arbitrarily small constants ζ, γ, δ > 0, there exists
an integer n = n(ζ, γ, δ) such that for a unique games instance L = (G(V,W,E), [n],
{πv,w}(v,w)∈E), it is NP-hard to distinguish between the following:

• (YES case) There are sets V ′ ⊆ V,W ′ ⊆ W such that |V ′| ≥ (1 − ζ)|V | and
|W ′| ≥ (1− ζ)|W | and an assignment to L such that all the edges between the
sets (V ′,W ′) are satisfied.

• (NO case) No assignment to L satisfies even a γ fraction of the edges. More-
over, the instance satisfies the following expansion property. For every set
S ⊆ V, |S| = δ|V |, we have Γ(S) ≥ (1 − δ)|W |, where Γ(S) = {w ∈ W |∃v ∈
S, (v, w) ∈ E}.

One can see that Hypothesis 1 differs from Conjecture 1 in two ways. In the YES
case, Hypothesis 1 requires that there exist a labeling that satisfies all constraints be-
tween two large sets V ′ ⊆ V,W ′ ⊆ W , whereas Conjecture 1 requires only that almost
all constraints are satisfied by a labeling. Furthermore, in the NO case Hypothesis 1
has the additional assumption that the instance satisfy the (arguably weak) expansion
property that any two sets of relative size δ have an edge between them.

As remarked in [4], no algorithmic results rule out Hypothesis 1. Furthermore,
each of the two extra properties (one in the YES case and the other in the NO case) can
be achieved by suitable transformations from the standard unique games conjecture.
(The property in the NO case can be achieved by imposing a dummy expander, and
Khot and Regev [26] showed how to transform a unique game instance into one with
the property in the YES case preserving low soundness.) However, it remains an
open problem whether assuming both properties simultaneously is equivalent to the
standard unique games conjecture.
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