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Abstract. We study constraint satisfaction problems on the domain
{−1, 1}, where the given constraints are homogeneous linear threshold
predicates. That is, predicates of the form sgn(w1x1 + · · · + wnxn) for
some positive integer weights w1, . . . , wn. Despite their simplicity, current
techniques fall short of providing a classification of these predicates in
terms of approximability. In fact, it is not easy to guess whether there
exists a homogeneous linear threshold predicate that is approximation
resistant or not.

The focus of this paper is to identify and study the approximation
curve of a class of threshold predicates that allow for non-trivial approx-
imation. Arguably the simplest such predicate is the majority predicate
sgn(x1 + · · ·+ xn), for which we obtain an almost complete understand-
ing of the asymptotic approximation curve, assuming the Unique Games
Conjecture. Our techniques extend to a more general class of “majority-
like” predicates and we obtain parallel results for them. In order to clas-
sify these predicates, we introduce the notion of Chow-robustness that
might be of independent interest.

Keywords: Approximability, constraint satisfaction problems, linear
threshold predicates.

1 Introduction

Constraint satisfaction problems or more succinctly CSPs are at the heart of
theoretical computer science. In a CSP we are given a set of constraints, each
putting some restriction on a constant size set of variables. The variables can
take values in many different domains but in this paper we focus on the case of
variables taking Boolean values. This is the most fundamental case and it has
also attracted the most attention over the years. We also focus on the case where
each condition is given by the same predicate, P , applied to a sequence of literals.
The role of this predicate P is key in this paper and as it is more important for
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us than the number of variables, we reserve the letter n for the arity of this
predicate while using N to be the number of variables in the instance. We also
reserve m to denote the number of constraints.

Traditionally we ask for an assignment that satisfies all constraints and in this
case it turns out that all Boolean CSPs are either NP-complete or belong to P
and this classification was completed already in 1978 by Schaefer [15]. In this
paper we study Max-CSPs which are optimization problems where we want to
satisfy as many constraints as possible. Almost all Max-CSPs of interest turn
out to be NP-hard and the main focus is that of efficient approximability.

The standard measure of approximability is given by a single number C and
an algorithm is a C-approximation algorithm if it, on each input, finds an as-
signment with an objective value that is at least C times the optimal value.
Here we might allow randomization and be content if the assignment found sat-
isfies these many constraints on average. A more refined question is to study
the approximation curve where for each constant c, assuming that the optimal
assignment satisfies cm constraints, we want to determine the maximal number
of constraints that we can satisfy efficiently.

To get a starting point to discuss the quality of approximation algorithms it is
useful to first consider the most simple algorithm that chooses the values of the
variables randomly and uniformly from all values in {0, 1}N . If the predicate P is
satisfied by t inputs in {0, 1}n it is easy to see that this algorithm, on the average,
satisfies mt2−n constraints. By using the method of conditional expectations it
is also easy to deterministically find an assignment that satisfies this number of
constraints.

A very strong type of hardness result possible for a Max-CSP is to prove
that, even for instances where the optimal assignment satisfies all constraints, it
is NP-hard to find an assignment that does significantly better (by a constant
factor independent of N) than the above trivial algorithm. We call such a predi-
cate “approximation resistant on satisfiable instances”. A somewhat weaker, but
still strong, negative result is to establish that the approximation ratio given by
the trivial algorithm, namely t2−n, is the best approximation ratio that can be
obtained by an efficient algorithm. This is equivalent to saying that we cannot
satisfy significantly more than mt2−n constraints when given an almost satis-
fiable instance. We call such a predicate “approximation resistant”. It is well
known that, unless P=NP, Max-3-Sat (i.e. when P is the disjunction of the
three literals) is approximation resistant on satisfiable instances and Max-3-Lin
(i.e. when P is the exclusive-or of three literals) is approximation resistant [8].

When it comes to positive results on approximability the most powerful tech-
nique is semi-definite programming introduced in this context in the classical
paper by Goemans and Williamson [6] studying the approximability of Max-
Cut, establishing the approximability constant αGW ≈ .878. In particular, this
result implies that Max-Cut is not approximation resistant. Somewhat surpris-
ingly as proved by Khot et al. [12], this constant has turned out, assuming the
Unique Games Conjecture, to be best possible. We note that these results have
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been extended in great generality and O’Donnell and Wu [14] determined the
complete approximation curve of Max-Cut.

The general problem of determining which predicates are approximation re-
sistant is still not resolved but as this is not the main theme of this paper let us
cut this discussion short by mentioning a general result by Austrin and Mossel
[2]. This paper relies on the Unique Games Conjecture by Khot [11] and proves
that, under this conjecture, any predicate such that the set P−1(1) supports a
pairwise independent measure is approximation resistant.

On the algorithmic side there is a general result by Hast, [7], that is somewhat
complementary to the result of Austrin and Mossel. Hast considers the real
valued function P≤2 which is the sum of the linear and quadratic parts of the
Fourier expansion of P . Oversimplifying slightly, the result by Hast says that
if P≤2 is positive on all inputs accepted by P then we can derive a non-trivial
approximation algorithm and hence P is not approximation resistant.

To see the relationship between the results of Austrin and Mossel, and Hast,
note that the condition of Austrin and Mossel is equivalent to saying that there
is a probability distribution on inputs accepted by P such that the average of
any unbiased quadratic function1 is 0. In contrast, Hast needs that a particular
unbiased quadratic function is positive on all inputs accepted by P . It is not
difficult to come up with predicates that satisfies neither of these two condi-
tions and hence we do not have a complete classification, even if we are willing
to assume the Unique Games Conjecture. The combination of the two results,
however, points to the class of predicates that can be written on the form

P (x) = sgn(Q(x))

for a quadratic function Q as an interesting class of predicates to study and
this finally brings us to the topic of this paper. We study this scenario in the
simplest form by assuming that Q is in fact an unbiased linear function, L. In
other words we have

P (x) = sgn(L(x)) = sgn

(
n∑

i=1

wixi

)
,

for some, without loss of generality, positive integral weights (wi)n
i=1. Note that if

we allow a constant term in L the situations is drastically different as for instance
3-Sat is the sign of linear form if we allow a non-zero constant term. One key
difference is that a probability distribution supported on the set “L(x) > 0”
cannot have even unbiased variables in the case when L is without constant
term and thus hardness results such as the result by Austrin and Mossel do not
apply.

To make life even simpler we make sure that L never takes the value 0 and
as L(−x) = −L(x), P accepts precisely half of the inputs and thus the number
of constraints satisfied by a random assignment is, on the average, m/2.

1 Throughout this work, we find it more convenient to represent Boolean values by
{-1,+1} rather than {0,1}.
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The simplest such predicate is majority of an odd number of inputs. For this
predicate it easy to see that Hast’s condition is fulfilled and hence, for any odd
value of n, his results imply that majority is not approximation resistant. This
result generalizes to “majority-like” functions as follows. For a linear threshold
functions, the Chow parameters, P̄ = (P̂ (i))n

i=0, [3] are for, i > 0, defined to be
the correlations between the output of the function and inputs xi. We have that
P̂ (0) is the bias of the function and thus in our case this parameter is always
equal to 0 and hence ignored.

Now if we order the weights (wi)n
i=1 in nondecreasing order then also the

P̂ (i)’s are nondecreasing but in general quite different from the weights. It is well
known that the Chow parameters determine the threshold function uniquely [3]
but the computational problem of given P̄ , how to recover the weights, or even
to compute P efficiently is an interesting problem and several heuristics have
been proposed [10,17,9,4] together with an empirical study that compares various
methods [18]. More recently, the problem of finding an approximation of P given
the Chow parameters has received increased attention, see e.g. [13] and [5]. The
most naive method is to use P̄ as weights. This does not work very well in general
but this is a case of special interest to us as it is precisely when this method
gives us back the original function that we can apply Hast’s results directly. We
call such a threshold function “Chow-robust” and we have not been able to find
the characterization of this class of functions in the literature. If we ignore some
error terms and technical conditions a sufficient condition to be Chow-robust is
roughly that

n∑
i=1

(w3
i − wi) ≤ 3

n∑
i=1

w2
i (1)

and thus it applies to functions with rather modest weights. We believe that
this condition is not very far from necessary but we have not investigated this
in detail.

Having established non-approximation resistance for such predicates we turn
to study the full curve of approximability and, in an asymptotic sense as a
function of n, we get almost tight answers establishing both approximability
results and hardness results. Our results do apply with degrading constants to
more general threshold functions but let us here state them for majority. We
have the following theorem.

Theorem 1. (Informal) Given an instance of Max-Maj-n with n odd and m
constraints and assume that the optimal assignment satisfies (1 − δ

n+1 )m con-
straints, for some δ < 1. Then it is possible to efficiently find an assignment that
satisfies (

1
2

+ Ω

(
(1 − δ)3/2

n1/2

)
−O

(
log4 n

n5/6

))
m

constraints.

Thus for large n we need almost satisfiable instances to get above the threshold
1
2 obtained by a a random assignment. This might seem weak but we prove that
this is probably the correct threshold.
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Theorem 2. (Informal) Assume the Unique Games Conjecture and let ε > 0 be
arbitrary. Then it is NP-hard to distinguish instances of Max-Maj-n where the
optimal value is (1− 1

n+1 − ε)m, from those where the optimal value is (1
2 + ε)m.

This proves that the range of instances to which Theorem 1 applies is essentially
the correct one. A drawback is that the error term O

(
log4 n
n5/6

)
in Theorem 1

dominates the systematic contribution of (1 − δ)3/2n−1/2 for δ very close to 1
and hence the threshold is not sharp. We are, however, able to sharply locate
the threshold where something nontrivial can be done by combining our result
with the general results by Hast. For details, see Section 3.

To see that the advantage obtained by the algorithm is also the correct order
of magnitude we have the following theorem.

Theorem 3. (Informal) Assume the Unique Games Conjecture and let ε > 0
be arbitrary. Then there is an absolute constant c such that it is NP-hard to
distinguish instances of Max-Maj-n where the optimal value is (1 − ε)m, from
those where the optimal value is (1

2 + c√
n

+ ε)m.

In summary, we get an almost complete understanding of the approximabil-
ity curve of majority, at least in an asymptotic sense as a function of n. This
complements the results for majority on three variables, for which there is a 2/3-
approximation algorithm [19] and it is NP-hard to do substantially better [8].

The idea of the algorithm behind Theorem 1 is quite straightforward while
its analysis gets rather involved. We set up a natural linear program which we
solve and then use the obtained solution as biases in a randomized rounding.
The key problem that arises is to carefully analyze the probability that a sum of
biased Boolean variables is positive. In the case of majority-like variables we have
the additional complication of the different weights. This problem is handled by
writing the probability in question as a complex integral and then estimating
this integral by the saddle-point method. The resulting proof is quite long and
does not fit within the page limit of the current abstract. This proof and several
other proofs are hence omitted and can be found in the full version of the paper.

The hardness results given in Theorem 2 and Theorem 3 resort to the tech-
niques of Austrin and Mossel [2]. The key to these results is to find suitable
pairwise independent distributions relating to our predicate. In the case of ma-
jority it is easy to find such distributions explicitly, while in the case of more
general weights the construction gets more involved. In particular, we need to
answer the following question: What is the minimal value of Pr[L(x) < 0] when
x is chosen according to a pairwise independent distribution. This is a nice com-
binatorial question of independent interest.

An outline of the paper is as follows. Notation and conventions used through-
out the paper are presented in Section 2. This is followed by the adaptation
of Hast’s algorithm for odd Chow-robust predicates and the result that (essen-
tially) the condition

∑n
j=1 w3

j − wj ≤ 3
∑n

j=1 w2
j on the weights is sufficient for

a predicate to be Chow-robust. In Section 4, we present our main algorithm
for Chow-robust predicates which establishes Theorem 1 in the special case of



Approximating Linear Threshold Predicates 115

majority. These positive results are then complemented in Section 5 where we
show essentially tight hardness results assuming the Unique Games Conjecture.
Finally, we discuss the obtained results together with interesting future direc-
tions (Section 6). As already stated, the current abstract only contains some of
our shorter proofs and a reader interested in the full proofs must turn to the full
version of the paper.

2 Preliminaries

We consider the optimization problem Max-CSP(P ) for homogeneous linear
threshold predicates P : {−1, 1}n → {−1, 1} of the form

P (x) = sgn(w1x1 + · · · + wnxn),

where we assume that the weights are non-decreasing positive integers 1 ≤ w1

≤ . . . ≤ wn such that
∑n

j=1 wj is odd and wmax := maxj wj = wn. The special
case of equal weights, which requires n to be odd, is denoted by Majn, and we
also write Max-Maj-n for Max-CSP(Majn). Using Fourier expansion, any such
function can be written uniquely as

P (x) =
∑

S⊆[n]

P̂ (S)
∏
j∈S

xj .

The Fourier coefficients are given by P̂ (S) = E[P (X)
∏

j∈S Xj ], where X is
uniform on {−1, 1}n. Since all homogeneous linear threshold predicates are odd
we have P̂ (S) = 0 when |S| is even. We will also write P̂ (j) = P̂ ({j}) for the
first level Fourier coefficients (i.e. the Chow parameters) and let P−1(1) denote
the set of assignments that satisfy P , i.e. P−1(1) = {x : P (x) = 1}.

For an instance I = (m, N, l, s) of Max-CSP(P ) consisting of m constraints, N
variables and matrices l ∈ Nm×n, s ∈ {−1, 1}m×n, the objective is to maximize
the number of satisfied constraints or, equivalently since P (−x) = −P (x) and
thus E[P (x)] = 0, the average advantage

Adv(x) :=
1
m

m∑
i=1

P (si,1xli,1 , . . . , si,nxli,n)

subject to x ∈ {−1, 1}N .

3 Adaptation of the Algorithm by Hast

Using Fourier expansion we may write the advantage of an assignment to a
Max-CSP(P ) instance as

Adv(x) =
1
m

m∑
i=1

sgn

⎛
⎝ n∑

j=1

wjsi,jxli,j

⎞
⎠ =

∑
S⊆[N ]:|S|≤n

cS

∏
k∈S

xk. (2)
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Hast [7] gives a general approximation algorithm for Max-CSP(P ) that achieves
a non-trivial approximation ratio whenever the linear part of the instance’s ob-
jective function is large enough. We use his algorithm, but as our basic predicates
are odd we have that cS = 0 for any S of even size and we get slightly better
bounds.

Theorem 4. For any δ > 0, there is a probabilistic polynomial time algorithm
which given an instance of Max-CSP(P ) with objective function

Adv(x1, . . . , xN ) =
∑

S⊆[N ],|S|≤n

cS

∏
k∈S

xk

satisfying
∑N

k=1 |c{k}| ≥ δ and cS = 0 for any set S of even cardinality, achieves

E[Adv(x)] ≥ δ3/2

8n3/4 .

Proof. Let ε > 0 be a parameter to be determined. We set each xi randomly and
independently to one with probability (1 + sgn(c{i})ε)/2. Clearly this implies
that E[c{i}xi] = ε|c{i}| and that |E[

∏
k∈S xk]| = ε|S|.

By Cauchy Schwarz inequality and Parseval’s identity we have that

∑
|T |=k

|P̂ (T )| ≤
(

n

k

)1/2
⎛
⎝∑

|T |=k

P̂ 2(T )

⎞
⎠

1/2

≤
(

n

k

)1/2

and hence ∑
|S|=k

|cS | ≤
(

n

k

)1/2

. (3)

We conclude that the advantage of the given algorithm is, given that cS = 0 for
even cardinality S, at least

ε
n∑

i=1

|ci| −
∑
|S|≥3

εk|cS | ≥ εδ −
n∑

k=3

εk

(
n

k

)1/2

. (4)

The sum in (4) is, provided ε ≤ (2
√

n)−1, and using Cauchy-Schwarz bounded
by(

n∑
k=3

(
1
n

)k (
n

k

))1/2( n∑
k=3

(ε2n)k

)1/2

≤
(

1 +
1
n

)n/2

(2ε6n3)1/2 ≤ 3ε3n3/2,

where we used
∑n

k=0

(
1
n

)k (n
k

)
=
(
1 + 1

n

)n and
∑n

k=3(ε
2n)k ≤ ε6n3

∑∞
k=0

1
2k for

the first inequality. Setting ε = δ1/2(2n3/4)−1, which is at most (2
√

n)−1 by (3)
with k = 1, we see that the advantage of the algorithm is

εδ − 3ε3n3/2 =
δ3/2

8n3/4
.

and the proof is complete.
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Let us see how to apply Theorem 4 in the case when P is majority of n variables.
Suppose we are given an instance that is 1 − δ

n+1 satisfiable and let us consider

N∑
i=1

c{i}αi (5)

where xi = αi is the optimal solution and prove that this is large. Any lower
bound for this is clearly a lower bound for

∑N
i=1 |c{i}|.

Let P̂1 be the value of any Fourier coefficient of a unit size set. Then any
satisfied constraint contributes at least P̂1 to (5) while any other constraint
contributes at least −nP̂1. We conclude that (5) is at least(

1 − δ

n + 1

)
P̂1 − δ

n + 1
nP̂1 = (1 − δ)P̂1.

Using Theorem 4 and the fact that P̂1 = Θ(n−1/2) we get the following corollary.

Theorem 5. Suppose we are given an instance of Max-Maj-n which is (1 −
δ

n+1 )-satisfiable. Then it is possible, in probabilistic polynomial time, to find an
assignment that satisfies a fraction

1
2

+ Ω((1 − δ)3/2n−3/2)

of the constraints.

Let us sketch how to generalize this theorem to predicates other than majority.
Clearly the key property is to establish that the sum (5) is large when most
constraints can be simultaneously satisfied. In order to have any possibility for
this to be true it must be that whenever a constraint is satisfied, then the con-
tribution to (5) is positive and this is exactly being “Chow-robust” as discussed
in the introduction. Furthermore, to get a quantitative result we must also make
sure that it is positive by some fixed amount. Let us turn to a formal definition.

Recall that the Chow parameters of a predicate P are given by its degree-0
and degree-1 Fourier coefficients, i.e., P̂ (0), P̂ (1), . . . , P̂ (n) for i = 1, 2, . . . , n. As
we are here dealing with an odd predicate, P̂ (0) = 0. If it holds that

P (x) = sgn(P̂ (1)x1 + P̂ (2)x2 + · · · + P̂ (n)xn) for all x ∈ {−1, 1}n

we say that such a predicate is Chow-robust and it is γ-Chow-robust iff

0 < γ ≤ min
x:P (x)=1

⎛
⎝ n∑

j=1

P̂ (j)xj

⎞
⎠ .

Note that γ ≤ P̂ (1) and in fact γ = Θ
(

1√
n

)
for majority. Let us state our

extension of Theorem 5 in the present context.
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Theorem 6. Let P (x) = sgn(w1x1+w2x2+· · ·+wnxn) be a γ-Chow-robust pred-
icate and suppose that I is a 1− δγ

γ+
∑n

j=1 P̂ (j)
satisfiable instance of Max-CSP(P )

where δ < 1. Then there is a probabilistic polynomial time algorithm that achieves
E[Adv(x)] = (1−δ)3/2γ3/2

8n3/4 .

The proof of this theorem is given in the full version of the paper.
Given Theorem 6 it is interesting to discuss sufficient conditions for P to be

Chow-robust and we have the following theorem.

Theorem 7. Suppose we are given positive integers (wj)n
j=1 such that

β(w) := 1 −
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

> 0.

Further, suppose that for at least 400 logn different values of j, say 1, 2, . . . , n1,
we have wj = 1. Then the predicate P (x) = sgn(x1 + · · · + xn1 + wn1+1xn1+1

+ · · · + wnxn) is γ-Chow-robust with γ =
(
β(w) −O

(
w2

max
n

))
P̂ (1).

Note that we need n sufficiently large to make γ positive.
Also this proof is postponed to the full version. Let us comment on the con-

dition on the Ω(log n) weights that we require to be one. This should be viewed
as a technical condition and we could have chosen other similar conditions. In
particular, we have made no effort to optimize the constant 400. In our calcu-
lations this condition is used to bound the integrand of a complex integral on
the unit circle when we are not close to the point z = 1 and this could be done
in many ways. We would like to point out that although there are choices for
the technical condition, some condition is needed. The condition should imply
some mathematical form of “when z on the unit circle is far from 1 then many
numbers of the form zwj are not close to 1”. Sets of weights violating such con-
ditions are cases when almost all weights have a common factor. An interesting
example is the function which, for odd n, has n − 4 weights equal to 3 and 4
weights equal to 1. This function is not Chow-robust for any value of n. The
above example shows that there are functions with weights of at most 3 that are
not Chow-robust. This is a tight bound as the techniques used in the proof of
Theorem 7 can be used to show that a function with weights equal to 1 or 2 is
Chow-robust.

4 Our Main Algorithm

We now give an improved algorithm for Max-CSP(P) for homogeneous linear
threshold predicates. On almost satisfiable instances, this algorithm achieves an
advantage Ω

(
1√
n

)
over a random assignment in comparison to the Ω

(
1

n3/2

)
advantage achieved by the adaptation of Hast’s algorithm presented in the pre-
vious section. However, a drawback of the more advanced algorithm is that we
are unable to analyze its advantage on instances that are close to the threshold
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where Hast’s algorithm still achieves a non-trivial advantage. Thus, in order to
fully understand the approximability curve, a combination of the algorithm pre-
sented below and Hast’s algorithm is needed. We now proceed by describing the
algorithm. Recall that we write the i’th constraint as

P (si,1xli,1 , . . . , si,nxli,n) = sgn(Li(x)),

where Li(x) =
∑n

j=1 wjsi,jxli,j , and let W :=
∑n

j=1 wj . The algorithm which is
parameterized by a noise parameter 0 < ε < 1 is described as follows:
Algorithm ALP,ε

1. Let x∗, Δ∗ be the optimal solution to the following linear program

maximize 1
m

∑m
i=1 Δi

subject to Li(x) ≥ Δi, ∀i ∈ [m]
x ∈ [−1, 1]N , Δ ∈ [−W, 1]m

2. Pick X1, . . . , XN ∈ {−1, 1} independently with bias E[Xi] = εx∗
i and return

this assignment.

As in Theorem 7 we now define β(w) for a set of weights w = (w1, . . . , wn) as

β(w) = 1 −
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

.

Note that β ≤ 1 for any set of weights, while for majority β = 1. Further, if
β(w) > 0, then Theorem 7 shows that P is γ-Chow-robust provided that n is
large enough.

We have the following theorem whose proof will appear in the full version.

Theorem 8. Fix any homogeneous threshold predicate P (x) = sgn(w1x1 + · · ·+
wnxn) having wj = 1 for at least 200 logn different values of j and satisfying
β := β(w) > 0. Then, for any 1 − δ

1+W satisfiable instance I of Max-CSP(P),
where δ < β, we have

E[Adv(ALP,ε(I))] = (β − δ)3/2 Ω

(
1√
n

)
−O

(
log4 n

n5/6

)
, (6)

where ε = (β − δ)1/2ε0 and ε0 > 0 is an absolute constant.

Thus, for δ bounded away from β, and large enough n, this algorithm is an
improvement over the algorithm of Theorem 6. We may also note that both the
algorithm ALP,ε and the algorithm of Theorem 6 can be de-randomized using
the method of conditional expectation.

As β = 1 for Majn the following result follows directly from Theorem 8:

Corollary 1. For all 1− δ
n+1 satisfiable instances I of Max-Maj-n, where δ < 1,

we have

E[Adv(ALP,ε(I))] = (1 − δ)3/2Ω

(
1√
n

)
−O

(
log4 n

n5/6

)
,

where ε = (1 − δ)1/2ε0 and ε0 > 0 is an absolute constant.
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5 Unique Games Hardness

The hardness results in this section are under the increasingly prevalent assump-
tion that the Unique Games Conjecture (UGC) holds. The conjecture was made
by Khot [11] and states that a specific combinatorial problem known as Unique
Games, or Unique Label Cover, is very hard to approximate (see e.g. [11] for
more details). The basic tool that we use is the result by Austrin and Mossel [2],
which states that the UGC implies that a predicate is approximation resistant
if it supports a uniform pairwise independent distribution, and hard to approx-
imate if it “almost” supports a uniform pairwise independent distribution. We
now state their result in a simplified form tailored for the application at hand:

Theorem 9 ([2]). Let P : {−1, 1}n → {−1, 1} be a n-ary predicate and let μ be
a balanced pairwise independent distribution over {−1, 1}n. Then, for any ε > 0,
the UGC implies that it is NP-hard to distinguish between those instances of
Max-CSP(P ).

– that have an assignment satisfying at least a fraction Prx∈({−1,1}n,μ)[P (x) =
1] − ε of the constraints;

– and those for which any assignment satisfies at most a fraction |P−1(1)|/2n+
ε of the constraints.

We first give a fairly easy application of the above theorem to the predicate Majn.
We then generalize this approach to more general homogeneous linear threshold
predicates.

Theorem 10. For any ε > 0 the UGC implies that it is NP-hard to distinguish
between those instances of Max-Maj-n

– that have an assignment satisfying at least a fraction 1 − 1
n+1 − ε of the

constraints;
– and those for which any assignment satisfies at most a fraction 1/2 + ε of

the constraints.

Proof. Consider the following distribution μ over {−1, +1}n: with probability
1

n+1 , all the bits in μ are fixed to −1, and with probability n
n+1 , μ samples

a vector with (n + 1)/2 ones, chosen uniformly at random among all possi-
bilities. To see that this gives a pairwise independent distribution let X =
(X1, . . . , Xn) be drawn from μ. Then E [

∑n
i=1 Xi] = 1

n+1 · (−n)+ n
n+1 ·1 = 0 and

E

[∑n
i,j=1
i
=j

XiXj

]
= E

[
(
∑n

i=1 Xi)
2
]
− n = 1

n+1 · (n2) + n
n+1 · 1− n = 0. Because

of the symmetry of the coordinates, it follows that for all i, E[Xi] = 0 and for
every i 	= j, E[XiXj] = 0. Therefore, the distribution μ is balanced pairwise
independent. Theorem 9 now gives the result.

For predicate Majn, we can also obtain a hardness result for almost satisfiable
instances:
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Theorem 11. For any ε > 0 the UGC implies that it is NP-hard to distinguish
between those instances of Max-Maj-n
– that have an assignment satisfying at least a fraction 1− ε of the constraints;
– and those for which any assignment satisfies at most a fraction 1

2 + cn
1√
n

+ ε

of the constraints, where

cn =
√

n

2n−2

(
n − 2
n−1

2

)
≈
√

2
π

.

Proof. Let k = n− 2 and consider the predicate P : {−1, 1}k → {−1, 1} defined
as P (x) = sgn(x1 + · · · + xk + 2). Our interest in P stems from the fact that
Max-Maj-n is at least as hard to approximate as Max-CSP(P ). Indeed, given an
instance of Max-CSP(P ), we can construct an instance of Max-Maj-n by letting
each constraint P (l1, . . . lk) equal Majn(y1, y2, l1, . . . , lk) for two new variables y1

and y2, that are the same in all constraints and always appear in the positive
form. As any good solution to the instance of Max-Maj-n sets both y1 and y2 to
one, we can conclude that any optimal assignments to the two instances satisfy
the same fraction of constraints.

Now consider the following distribution μ over {−1, 1}k: with probability 1
k+1 ,

all the bits in μ are fixed to ones, and with probability k
k+1 , μ samples a vector

with (k + 1)/2 minus ones, chosen uniformly at random among all possibilities.
The same argument as in the proof of Theorem 10 shows that the distribution
μ is uniform and pairwise independent. Theorem 9 now gives that for any ε > 0
the UGC implies that it is NP-hard to distinguish between those instances of
Max-CSP(P ) that have an assignment satisfying a fraction 1 − ε of the con-
straints; and those for which any assignment satisfies at most a fraction

|P−1(1)|
2k

+ ε =
1
2k

k+1
2∑

j=0

(
k

j

)
+ ε =

1
2

+

(
k

k+1
2

)
2k

+ ε =
1
2

+

√
2
πk

+ o(1/k) + ε.

The result now follows from the observation above that we can construct an
instance of Max-Maj-n from an instance of Max-CSP(P ) such that optimal
assignments to the two instances satisfy the same fraction of the constraints.

Taking the convex combination of the results in Theorems 10 and 11 yields:

Corollary 2. For any δ : 0 ≤ δ ≤ 1 and any ε > 0, the UGC implies that it is
NP-hard to find an assignment x to a given 1 − δ

n+1 − ε satisfiable instance of
Max-Maj-n achieving

Adv(x) ≥ (1 − δ)cn
1√
n

+ ε,

where cn is the constant defined in Theorem 11.

The above techniques also extend to general weights and we have the following
theorem.

Theorem 12. Suppose we are given positive integers (wj)n
j=1 such that

∑n
j=1 w3

j

< 100n and
∑n

j=1 wj is odd. Further, suppose that for at least 400 logn different
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values of j we have wj = 1. Let P (x) = sgn(w1x1 + · · · + wnxn), then, for any
ε > 0, the UGC implies that it is NP-hard to distinguish between those instances
of Max-CSP(P )

– that have an assignment satisfying at least a fraction 1 − O
(

w4
max
n

)
− ε of

the constraints;
– and those for which any assignment satisfies at most a fraction 1/2 + ε of

the constraints.

Of course the key to this theorem is to study suitable pairwise independent
distributions. In particular, we prove that similar ideas as used in the proof of
Theorem 10 can be used to construct almost pairwise distributions for more
general “majority-like” threshold predicates. As we allow predicates with dif-
ferent weights, the analysis gets more involved and again the problem reduces
to estimating complex integrals using the saddle point method. For this reason
we need the technical conditions on the weights that were previously discussed
after Theorem 7. We then show that such distributions can be slightly adjusted
to obtain perfect balanced pairwise distributions and the final result follows by
applying Theorem 9. The details will appear in the full version of the paper.

6 Conclusions

We have studied, and obtained rather tight bounds for the approximability curve
of “majority-like” predicates. There are still many questions to be addressed and
let us mention a few.

This work has been in the context of predicates given by Chow-robust thresh-
old functions. Within this class we already knew, by the results of Hast [7], that
no such predicate can be approximation resistant and our contribution is to ob-
tain sharp bounds on the nature of how approximable these predicates are. It is
a very nice open question whether there are any approximation resistant predi-
cates given as thresholds of balanced linear functions. It is not easy to guess the
answer to this question.

Looking at our results from a different angle one has to agree that the ap-
proximation algorithm we obtain is rather weak. For large values of n we only
manage to do something useful on almost satisfiable instances and in this case
we beat the random assignment by a rather slim margin. On the other hand we
also prove that this is the best we can do. One could ask the question whether
there is any other predicate that genuinely depends on n variables, accepts about
half the inputs and which is easier to approximate than majority. It is not easy
to guess what such a predicate would be but there is also very little information
to support the guess that majority is the easiest predicate to approximate.

Using the results of Austrin and Mossel, Austrin and H̊astad [1] proved that
almost all predicates are approximation resistant. One way to interpret the re-
sults of this paper is that for the few predicates of large arity where we can
get some nontrivial approximation, we should not hope for too strong positive
results.
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