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Abstract

We study the problem of scheduling jobs on identical
parallel machines without preemption. In the consid-
ered setting, some of the jobs are already assigned ma-
chines and starting times, for example due to external
constraints not explicitly modelled. The objective is
to assign the rest of the jobs in order to minimize the
makespan.

It is known that this problem cannot be approx-
imated better than within a factor of 3/2 unless
P = NP. An algorithm that achieves 3/2 + ε for any
ε > 0 was presented by Diedrich and Jansen [DJ09],
but its running time is doubly exponential in 1/ε. We
present an improved algorithm with approximation
ratio 3/2 and polynomial running time. We also give
matching results for the related problem of scheduling
with reservations. The new algorithm is both faster
and conceptually simpler than the previously known
algorithms.

1 Introduction

In parallel machine scheduling, an important issue is
the scenario where either some jobs are already fixed
in the system [SSW99a, SSW99b, DJ09] or intervals of
non-availability of some machines must be taken into
account [DJPT07, DJPT10, HLC05, Lee96, Leu04,
LSL03, DJ09]. The first problem occurs when high-
priority jobs are already scheduled in the system while
the latter problem is due to regular maintenance of
machines. Both models are relevant for turnaround
scheduling [MMS] and distributed computing where
machines are donated on a volunteer basis.

Formally, the problem can be defined as follows:
an instance consists of m, the number of machines,
considered part of the input and n jobs with non-
negative processing times p1, . . . , pn ∈ N. The first k
jobs are fixed via a list (m1, s1), . . . , (mk, sk) giving
a machine index and starting time for the respective
job. We assume that these fixed jobs do not overlap.
A schedule is a non-preemptive assignment of the jobs
to machines and starting times such that the first k
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jobs are assigned as encoded in the instance and that
the jobs do not intersect.

For the problem with fixed jobs, the objective is to
minimize the makespan of all jobs, including the fixed
ones. In the setting with non-availability, the fixed
jobs are not included when finding the makespan.

Without loss of generality, we may assume m < n:
if m ≥ n, there are at least m − k ≥ n − k machines
without fixed jobs on them, which can execute the
n− k unfixed jobs optimally in a trivial way.

Both problems generalize the well-known prob-
lem P||Cmax(scheduling jobs on parallel identical ma-
chines to minimize makespan) [HS88] and hence are
strongly NP-hard.

Related work. Scheduling with fixed jobs was
studied by Scharbrodt, Steger & Weisser [Sch00,
SSW99a, SSW99b]. They mainly studied the problem
for constant m; for this strongly NP-hard formula-
tion (which consequently does not admit an FPTAS)
they present a PTAS. They also found approxima-
tion algorithms for general m with ratios 3 [Sch00]
and 2+ε [SSW99a, SSW99b]; since the finishing time
of the last fixed job is a lower bound for the optimal
makespan C∗max, we can simply use a PTAS for the
well-known problem P||Cmax [HS88] to schedule the
remaining n − k jobs after the fixed job which fin-
ishes last. Scharbrodt, Steger & Weisser [SSW99a,
SSW99b] also proved that for scheduling with fixed
jobs there is no approximation algorithm with ratio
3/2−ε, unless P = NP, for any ε ∈ (0, 1/2]. In [DJ09],
Diedrich and Jansen present a 3/2 + ε-approximation
for arbitrary ε > 0 for both settings, however, it re-
lies on large enumeration steps and involves up to
m1/ε1/ε2

calls to a subroutine to approximately solve a
difficult maximization subproblem, the Multiple Sub-
set Sum Problem (MSSP; see Section 2), with accu-
racy ε. We denote by TMSSP (n, ε) the time complex-
ity of this subroutine.

Results. We present improved algorithms for
scheduling with fixed jobs and scheduling with non-
availability. These algorithms on the one hand
achieve exactly the bound of 3/2 and, on the other
hand, are both faster and conceptually simpler than
the previous algorithms in [DJ09]. Formally stated,
our results are the following:
Theorem 1. Scheduling with fixed jobs admits
an approximation algorithm with ratio 3/2 and
running time O(n logn + log(nmaxj=1,...,n pj)(n +
TMSSP (n, 1/8))).

For scheduling with non-availability, the result is
slightly weaker for technical reasons:



Theorem 2. Scheduling with non-availability, even
if at any time, there is only at most one unavailable
machine, does not admit a polynomial time algorithm
with a constant approximation ratio unless P = NP.

Theorem 3. Scheduling with non-availability, as
long as a constant fraction ρ ≥ 1/m of machines
is always available, admits a 3/2-approximation with
running time O(n logn + log(nmaxj=1,...,n pj)(n +
TMSSP (n, ρ/8))).

The remainder of the paper is structured as fol-
lows: in Sections 2–5, we describe the algorithm and
prove its correctness for the case of fixed jobs, i.e.
Theorem 1. In Section 6, we prove the lower bound
of Theorem 2 and show the minor changes that are
needed to use our algorithm for the case of non-
availability.

2 Scheduling with Fixed Jobs and the Multi-
ple Subset Sum Problem

Our approach, as well as the one presented in [DJ09],
relies heavily on algorithms for the Multiple Subset
Sum Problem. In its optimization variant, this prob-
lem is defined as follows:
Definition 4. Given n items with sizes w1, . . . , wn
and m ≤ n target capacities C1, . . . , Cm, possibly not
all equal, we are asked to find a partition of the items
into m+1 sets S1, . . . , Sm+1 such that

∑
j∈Si wj ≤ Ci

for all i ∈ {1, . . . ,m} and
∑m
i=1

∑
j∈Si wj is maxi-

mized. The set Sm+1 collects items that remain un-
packed.

This problem in itself is strongly NP-hard, as
shown by Caprara et al. [CKP00]. The problem
that is more commonly considered is the Multi-
ple Knapsack Problem, where items have profits
that may be different from their size and the over-
all packed profit has to be maximized. Chekuri
and Khanna were the first to present a PTAS for
this problem [CK05]. The best currently known
algorithm for both MKP and MSSP is an effi-
cient PTAS due to Jansen [Jan09b] with a run-
ning time of TMSSP (n, ε) = 2O(log(1/ε)·1/ε5) +
poly(n) for n items and m ≤ n target capacities,
which was subsequently improved to TMSSP (n, ε) =
2O(log(1/ε)4·1/ε) + poly(n) [Jan09a] and, if the Modi-
fied Integer Roundup Conjecture (MIRUP) of Schei-
thauer and Terno [ST95] holds, this even reduces to
TMSSP (n, ε) = 2O(log(1/ε)2·1/ε) + poly(n) [Jan09a].

The connection of MSSP to our scheduling prob-
lem is the following: guessing a makespan T for the
scheduling problem will induce, along with the prepo-
sitioned jobs, bins of different sizes into which the
remaining jobs have to be placed, so solving MSSP
exactly is equivalent to solving the decision version of
the scheduling problem. Since MSSP is hard, we can
only solve it approximately, but with arbitrary preci-
sion ε. The major problem now is that even though
the total size of jobs not assigned by an MSSP al-
gorithm (which will have to be scheduled after the
guessed optimal makespan T ) will only be a small
fraction of the total length of all jobs, some of these
rejected jobs may still be long, which results in a bad
approximation ratio.

Much of the running time of the algorithm
in [DJ09] is spent in solving network flow problems
for a very large number of candidate solutions which
have to be enumerated in order to avoid this prob-
lem by placing large jobs in advance. In contrast, our

new algorithm uses a single post-processing step and
does not need any enumerative steps, nor network
flow solvers, beyond those in the MSSP subroutine.

The outline of our algorithm is given in Figure 1:
we give a relaxed decision algorithm that generates
a schedule of length at most 3/2 · T provided there
exists some schedule that packs all jobs in the inter-
val [0, T ). This algorithm is combined with a binary
search. The number of iterations of the binary search
is polynomially bounded in the input length by the
following easy insight:
Remark 5. For the shortest possible makespan,
OPT, we have

max
j∈{1,...,k}

(sj + pj) ≤ OPT

≤ max
j∈{1,...,k}

(sj + pj) + n max
j∈{k+1,...,n}

pj (1)

i.e. the range to be searched over has length
maxj∈{1,...,k}(sj + pj) + nmaxj∈{k+1,...,n} pj −
maxj∈{1,...,k}(sj + pj) ≤ nmaxj=1,...,n pj, which is
pseudopolynomial in the instance size.

In particular, we have a polynomial number
O(log(nmaxj=1,...,n pj)) of binary search steps.

Proof. The lower bound follows from the fact that
the “latest” fixed job counts towards the makespan; a
schedule proving the upper bound is easily obtained
in linear time by scheduling all unfixed jobs on a single
machine. �

We note that by using Graham’s List Schedul-
ing algorithm [Gra69] after all the fixed jobs have
finished, we can reduce the size of the search re-
gion to

∑
j∈{k+1,...,n} pj/m + maxj=1,...,n pj ≤ (1 +

n/m) maxj=1,...,n pj , which would be preferable for a
practical implementation.

Hence, we will concentrate on one iteration of the
binary search in the following. In each iteration, we
first apply a low-complexity check, described more
closely in Section 3, that correctly rejects some in-
feasible guesses of T . We then pack almost all jobs
into the schedule as described in Section 4. A novel
postprocessing step ensures that the unpacked jobs
have suitable properties to pack them later. Finally,
we pack these jobs into an extra timeframe of length
T/2 as described in Section 5.

3 Quickly discarding too-small T

For a given target makespan T we generate all in-
tervals of availability of machines, in the following
called gaps, within the planning horizon [0, T ) from
the k encoded fixed jobs. Let q(T ) ∈ N∗ denote the
number of gaps and let G(T ) := {G1, . . . , Gq(T )} de-
note the set of gaps. For each i ∈ {1, . . . , q(T )} we
also use Gi to denote the size of gap Gi. Without loss
of generality, we assume G1 ≥ . . . ≥ Gq(t). Note that
q(T ) ≤ k+m ≤ 2n since at most k fixed jobs induce a
gap “left” to them and there are at mostm gaps whose
“right” limit is not created by a fixed job but by the
limit of the planning horizon. In total, q(T ) is polyno-
mially bounded in the instance size. These gaps can
easily be processed by sorting the fixed jobs on each
machine by their execution times and assigning the
gaps between them. This is done in time O(n logn).
Furthermore, we need that in each iteration of the
while-loop all gaps are sorted. The gaps that are not
limited by the planning horizon will not changed in
the algorithm. Hence we can sort them by their sizes



1 Set LB := maxj∈{1,...,k}(sj + pj),
UB := LB + maxj∈{k+1,...,n} pj + 1

m

∑n
j=k+1 pj

2 Let σbest a schedule of makespan at most UB.
3 Sort the jobs by non-increasing length.
4 Generate and sort the gaps G(T ) as described
in Section 3.

5 while UB − LB ≥ 1 do
6 Set T := d(UB + LB)/2e.
7 Update the gaps and partition into large

and small jobs JL(T ) ∪̇ JS(T ) as described
in Section 3. The large jobs and gaps are
sorted by non-increasing sizes.

8 for j = 1, . . . ,m do
9 if the jth largest job is large and bigger

than the jth largest gap then
10 reject T .

11 Run a 7/8-approximation for MSSP on
G(T ) and the jobs, as described in
Section 4.

12 if more than mT/8 is unpacked then
13 reject T .
14 if T was rejected then
15 LB := T

16 else
17 set σbest to the generated packing and

UB := T .

18 Modify the packing to include all items from
JL(T ) as described in Section 4.

19 Partition the remaining jobs into two groups
and use Next-fit to schedule the remaining jobs
in the interval [UB, 3/2UB] as described in
Section 5.

Figure 1: Outline of the approximation algo-
rithm for scheduling with fixed jobs.

in line 4 before the while-loop is processed. The sizes
of the other gaps are modified in each loop by the
same amount. Hence we can sort them also before the
while-loop is processed and update only the lengths
of the gaps in line 7. Afterward we do a merge step
of the two sets of gaps to have a sorting of all gaps by
their sizes. In total we need O(n logn) to compute
and sort the two sets of gaps, before the while-loop
in line 5 is processed. In each iteration we need time
O(n) to update the lengths of the gaps and merge
them. We define

JL(T ) := {j ∈ {k + 1, . . . , n} | pj ∈ (T/2, T ]},
JS(T ) := {j ∈ {k + 1, . . . , n} | pj ∈ (0, T/2]}

to partition the set of non-fixed jobs into large and
small jobs. If any unplaced job is longer than
T , we can obviously immediately reject the guessed
makespan of T as too small. We can partition the
jobs and sort the large jobs in each iteration in lin-
ear time, by taking the sorting of all jobs before the
while-loop is processed.

The procedure in step 8 of the algorithm quickly
checks a necessary condition for feasible solutions:
bear in mind that a large job has length pj > T/2, so
there are at most m large jobs, one per machine, and
no gap, being of size at most T by definition, can be
large enough to accommodate two large jobs at once.
Lemma 6. If a guessed makespan T is rejected in
step 10 of the algorithm, then no feasible schedule of
length T exists.

Proof. Assume j minimal such that the jth largest
job is large and does not fit into the jth biggest gap.
For convenience, denote the lengths of the j largest
jobs p1 ≥ . . . ≥ pj and the size of the gaps G1 ≥ . . . ≥
Gj , adding “dummy gaps” of size 0 if needed.

By definition, we have p1 ≥ . . . ≥ pj > Gj , hence
a feasible schedule of length T would have to assign
these j jobs to at most j− 1 gaps G1, . . . , Gj−1. This
is a contradiction, since

p1 ≥ . . . ≥ pj > T/2 ≥ G1/2 ≥ . . . ≥ Gj−1/2 ,

so no two large jobs fit into one single gap. �

4 Packing almost all jobs

In this section, we will show that if T ≥ OPT, we can
generate a schedule of length T that assigns “almost
all” jobs. To ensure an approximation guarantee of
3/2 · T it is critical that all jobs are scheduled within
the time window [0, T ]. We proceed in two steps.
First, we show:
Lemma 7. If a feasible schedule of length T exists,
then step 11 generates a packing such that the total
length of unpacked jobs is bounded by mT/8.

To do this, we create an instance of MSSP as fol-
lows: each gap Gi corresponds to a knapsack of ca-
pacity Gi and each job of length pi, i = k + 1 . . . n,
corresponds to an item of size pi. We run the EPTAS
of [Jan09b, Jan09a] on this instance with accuracy
1/8.

Observe that if (and only if) our current guessed
makespan T is at least the optimal makespan OPT,
it is possible to pack all items into the gaps, so
the EPTAS will leave items of total area at most
(
∑n
i=k+1 pi)/8 ≤ mT/8 unpacked. Here, we use that

mT is a natural upper bound on
∑n
i=1 pi if T ≥ OPT.
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Figure 2: Choice of gaps Gj1 , . . . in the proof of
Lemma 8. Shaded areas indicate possible small jobs;
the darker areas are actually unpacked.

Hence, if more than total length mT/8 is not packed,
we can also immediately reject our guessed T .

At this stage, the unpacked jobs may still include
up to b(mT/8)/(T/2)c = bm/4c large jobs. Obvi-
ously, if large jobs, which have length > T/2, are
not packed in the gaps in the period [0, T ), we can-
not hope to find an overall schedule of length at most
3
2T . Hence, we modify the packing to include all large
jobs, at the cost of increasing the total area of un-
packed jobs by a constant factor, using the following
construction:
Lemma 8. Given a packing of some jobs into the
gaps such that jobs of total length δ are unpacked,
amongst them a large job j1 of length pj1 > T/2, we
can either find in polynomial time a modified packing
such that the total length of unpacked jobs is at most
δ + pj1 and the additional large job j1 is packed as
well as all previously packed large jobs or else prove
that no packing of all jobs into the gaps exists at all.

Proof. Let t1 be the largest index such thatGt1 ≥ pj1 .
(Recall that T ≥ G1 ≥ · · · ≥ Gq(T ).) Clearly, pj1

can only possibly be scheduled in one of the gaps
G1, . . . , Gt1 , so if each one of these already contains a
job at least as large as pj1 , no packing can exist at all.
This condition is already tested for in step 8 of the al-
gorithm, before the EPTAS is called. Hence, we select
one gap Gj1 among the gaps G1, . . . , Gt1 that con-
tains a large job of minimal size. For this purpose, a
gap without large job contains a ‘dummy large job’ of
size 0. Denote this job j2, of size pj2 < pj1 . We tem-
porarily unpack j2, and permanently unpack (evict)
all small jobs that might have been in its gap as well,
which have total length `1 ≤ Gj1 − pj2 ≤ T − pj2 .
(See also Figure 2 for this construction.)

If pj2 = 0, we have now scheduled one more large
job. Otherwise, we need to re-schedule j2. As for j1,
let t2 ≥ t1 be the largest index such that Gt2 ≥ pj2 .
Furthermore, we already know that gaps G1, . . . , Gt1
all carry large jobs at least as large as j2, since j2
was chosen to be of minimal size amongst the large
jobs there. Hence, we can restrict our attention to the
gaps Gt1+1, . . . , Gt2 . Again, if all these gaps already
contain jobs at least as large as j2, no feasible packing
exists for this choice of T at all. Otherwise, we select
a gap Gj2 with a large job j3 of minimal size pj3 (pos-
sibly 0) and iterate as above, discarding small jobs of
total size `2 ≤ Gj2 − pj3 ≤ Gt1+1 − pj3 ≤ pj1 − pj3 .

After some number r ≤ m of iterations, we have
pjr+1 = 0, i.e. we did not need to unpack another
large job, and the number of packed large jobs has
increased by one. (Otherwise, step 8 would have re-
jected T already because there are more large jobs
than large gaps.) Finally, the total size of small jobs

that were unpacked can be bounded by
r∑
i=1

`i ≤ (T − pj2) + (pj1 − pj3) + . . .

+ (pjr−1 − pjr+1)

= T +
r−1∑
i=1

pji −
r+1∑
i=2

pji

= T + pj1 − pjr ≤ 2pj1 .

The final inequality holds since we know that jr is a
large job, so T − pjr < T/2 < pj1 . Since we have
now additionally packed pj1 , the net loss incurred is
bounded by pj1 . �

With a slight modification we can schedule all
large unpacked jobs of total size mT/8 in time
O(n logn). Note, that a naive approach would re-
quire n2 steps to assign all large jobs.
Lemma 9. Given a packing of some jobs into the
gaps such that jobs of total length mT/8 are unpacked,
we obtain a packing that includes all large jobs and
has unpacked jobs with total size at most 2mT/8 =
mT/4.

The running time of the procedure is bounded by
O(n logn).

Proof. We schedule the unpacked large jobs with the
algorithm given in Figure 3. Here we assume that
the large unpacked jobs are initially sorted by non-
increasing lengths and the gaps by non-increasing
sizes. Here we take use of heaps, one for the jobs, de-

1 Build the heap JH of all unpacked jobs, sorted
by non-increasing lengths.

2 Let GH be an empty heap of the gaps.
3 Let t = 1.
4 while JH is not empty do
5 extract root jh of JH, i.e. the unscheduled

job of maximal processing time.
6 while Gt ≥ pjh do
7 add Gt to GH sorted by non-decreasing

sizes of large jobs containing in the gaps.
8 t = t+ 1.
9 extract root Gh of GH, i.e. the gap that

contains a job jGh of minimal size, or one
gap with a dummy large job.

10 if jGh has processing time larger 0 then
11 add jGh to JH.
12 unpack all jobs in Gh.
13 schedule jh on Gh.

Figure 3: Outline of the algorithm for scheduling
the unpacked large jobs.

noted by JH, and one for the gaps, denoted by GH.
The heap JH is sorted by non-increasing processing
lengths of the unscheduled jobs, i.e. the root of this
heap is a large job of maximal processing time. The
heap GH is initially empty and we add the gaps one
after another. This heap is sorted by non-decreasing
lengths of a large job inside the gap (note that there is
at most one large job in each gap). The gap that con-
tains a large job of minimal size, possibly a ’dummy
large job’ of length 0, is the root of the heap. Using
heaps allows us to extract the root (and rebuild the
heap) and insert an element in logarithmic time in
the number of elements inside the heap.



For the analysis we use the same sequences of jobs
as in Lemma 8. It does not matter for the analysis
whether we schedule one sequence after another, or
we schedule the jobs sorted by their lengths. Note,
that after we scheduled a job into a gap the gap will
never be considered again, since afterwards we sched-
ule only jobs of smaller sizes. We use the analysis
of Lemma 8 for all initially large unscheduled jobs
of total size mT/8. Here consider the sequence of
jobs generated by our algorithm to schedule the un-
packed large jobs. Using the analysis in Lemma 8,
each large job of length pj1 is inserted by removing
small jobs of total length 2pj1 . Therefore we have re-
moved (or unpacked) small jobs of total size at most
2mT/8 = mT/4 after applying the algorithm.

The running time of the algorithm given in Fig-
ure 3 is as follows. The algorithm re-schedules at
most n jobs, hence the while loop in line 4 has at
most z ≤ n iterations. In each iteration i we extract
one job of the heap JH, which will not re-scheduled
again. To extract and delete one job and rebuild the
heap we need time at most O(logbm/4c), since there
are at most bm/4c many jobs in the heap. We pos-
sibly add one job to the heap JH, which needs the
same amount of time as extracting one.

While we are in the ith iteration of the outer loop,
let vi denote the number of iterations of the inner
while loop in line 6. Since we add at most q(T ) gaps
to the heap GH we have

∑z
i=1 vi ≤ q(T ). The time

for extracting or adding one gap needs time at most
O(log q(T )). In total we have in each iteration i one
extraction of a large job, vi additions of gaps, one ex-
traction of a gap, and possibly one addition of a job.
Since m, q(T ) ≤ n we have

∑z
i=1 2O(logbm/4c) +

(vi + 1)O(log q(T )) ≤
∑n
i=1(vi + 3)O(log(n)) =

3nO(logn) +
∑n
i=1 viO(log(n)) = O(n logn). �

5 Packing remaining jobs

After the construction of the previous section, we are
left with the minimal value UB such that we first
have successfully packed almost all jobs, (all but total
processing time mUB/8), which we have modified by
Lemma 8 to a packing of all but total processing time
2mUB/8 = mUB/4. Since the construction is valid
for makespan T = OPT, we know that the final UB ≤
OPT.

We will now schedule the remaining jobs in the
interval [UB, 3

2 UB] using a Next Fit heuristic as fol-
lows: for convenience, denote these jobs j1 . . . , jn′ .
Partition the jobs into

J ′S(UB) := {i ∈ {1, . . . , n′} | pji ∈ (UB/4,UB/2]},
J ′′S(UB) := {i ∈ {1, . . . , n′} | pji ∈ (0,UB/4].}

Then schedule each of the jobs in the set J ′S(UB) on
one machine. This machine will not considered again.
For every remaining machine, we greedily assign jobs
in J ′′S(UB) to it until its extra load would exceed 1

2 UB
or we run out of jobs. Clearly, the running time of
this procedure is O(n).
Lemma 10. If the total size of jobs to be scheduled in
this way is at most mUB/4, all jobs can be assigned
in the interval [UB, 3

2 UB].

Proof. Note that since UB ≥ maxj∈{1,...,k} pj+sj , all
machines are available during the entire interval. The
algorithm assigns jobs to the machines in a greedy
fashion, and once a machine is considered “full”, it is

closed and never reopened again, and the next ma-
chine is considered. We show that a machine is not
closed unless its load larger than UB/4: then, assum-
ing a job would need to be assigned to a (m + 1)st
machine, the total length of the jobs would be strictly
larger than mUB/4.

The machines with a job in J ′S(UB) have load
larger than UB/4 since the processing time of one job
in J ′S(UB) has size larger than UB/4. Assume now
that some machine mi is closed because it cannot ac-
commodate job j for j ∈ J ′′S(UB). This means mi’s
current extra load is in the interval (UB/2−pj ,UB/2].
Since pj ≤ UB/4, our claim is true since UB/2−pj ≥
UB/4. �

In total, this proves the correctness of the al-
gorithm. As to the running time, note that for
each iteration of the binary search, the running
time is essentially O(n) + TMSSP (n, 1/8). By
Remark 5, the number of iterations is bounded
by O(log(nmaxj=1,...,n pj)), so the overall running
time is bounded by O(log(nmaxj=1,...,n pj)(n +
TMSSP (n, 1/8)) + n logn).

In total, we obtain:
Theorem 1. Scheduling with fixed jobs admits
an approximation algorithm with ratio 3/2 and
running time O(n logn + log(nmaxj=1,...,n pj)(n +
TMSSP (n, 1/8))).

6 Scheduling with Non-availability

In this section, we briefly discuss how the algorithm
given above can be adapted to scheduling with non-
availability. This setting is very closely related to
scheduling with fixed jobs, the main difference is that
where for fixed jobs, the makespan is given as

Cmax = max
j∈{1,...,n}

sj + pj , (2)

it is
Cmax = max

j∈{k+1,...,n}
sj + pj (3)

here, i.e. the “fixed jobs” are not proper jobs, but, for
example, downtime needed for maintenance reasons.

This difference makes the problem slightly harder,
as a reservation late in the schedule does not increase
lower bounds on the optimal value. In [DJ09], it is
shown that this can be exploited to prevent any con-
stant approximation ratio (unless P = NP), as long
as reservations can occur on all the machines. We
can actually show a slightly stronger result: even if
at any point in time, almost all machines are running,
no good approximation is possible.
Theorem 2. Scheduling with non-availability, even
if at any time, there is only at most one unavailable
machine, does not admit a polynomial time algorithm
with a constant approximation ratio unless P = NP.

Proof. Let c ∈ R, c ≥ 1. We aim at a contradic-
tion and suppose that there is an approximation al-
gorithm B with constant ratio c for scheduling with
non-availability where for each time step there is only
one unavailable machine. Without loss of generality,
we assume that c is integer. We use a reduction from
the following NP-complete problem Equal Cardinality
Partition (ECP) [GJ79]. The construction is sketched
in Figure 4.
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m3

A(n+ 1)

A(n+ 1)

2A− 1
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c(A(n+ 1) + 1)

A(n+ 1) + 1

Figure 4: In the structure of intervals of non-
availability of the generated instance I ′, for every time
step there is at most one unavailable machine.

• Given: Finite list I = (a1, . . . , an) of even car-
dinality with ai ∈ N∗ for each i ∈ {1, . . . , n},
A ∈ N∗ such that

∑n
i=1 ai = 2A.

• Question: Is there a partition of the list I into
lists I1 and I2 such that |I1| = n/2 = |I2| and∑
i∈I1

ai = A =
∑
i∈I2

ai?

Given an instance I of ECP we define an instance
I ′ of scheduling with non-availability for arbitrary
m ≥ 2 where for each time step there is only at most
one unavailable machine as follows. We may assume
m ≤ A by suitable scaling of all ai.

Each item ai is copied to a job k + i of length
2A+ai. Furthermore, the k periods of non-availability
are defined as follows (also see Figure 4): for all
t = 0, . . . , c(A(n + 1) + 1), there is a non-availability
interval [t, t + 1) on machine m1 iff t ≡ 0 (mod 2A)
and t > A(n+ 1), on machine m2 iff t ≡ 1 (mod 2A)
and t > A(n+1)+1, on machine mi for 3 ≤ i ≤ m iff
t ≡ i − 1 (mod 2A). Additionally, the interval [0, 1)
on machine m2 is not available. It is easily seen that
at any point, at most one machine is unavailable.

Note also that k ≤ cm(n + 1), since there are at
most m non-availabilities per time interval of length
A, so k is polynomial in the size of the instance I.

By construction, on no machine, there is an avail-
able gap of length ≥ 2A that is at the same time
entirely in the interval [A(n+ 1) + 1, c(A(n+ 1) + 1)),
so no job of I ′ can be scheduled there. For ma-
chines 3, . . . ,m, there even is no gap of size ≥ 2A
in the interval [0, c(A(n+ 1) + 1)). In particular, the
makespan of any schedule of this instance is either at
most A(n+1)+1 or strictly larger than c(A(n+1)+1).

If I is a yes-instance to ECP, then there is a sched-
ule in I ′ that has makespan (at most) A(n + 1) + 1:
let I1 ∪ I2 a suitable partition of I, then the corre-
sponding partition I ′1 ∪ I ′2 of I ′ satisfies that∑

i∈I′1

pi′ =
∑
i∈I′1

2A+ ai = n

2 2A+
∑
i∈I′1

ai

= (n+ 1)A =
∑
i∈I′2

pi′ ,

so these two sets can be scheduled on m1 and m2
respectively in the intervals [0, A(n+1)) and [1, A(n+
1) + 1). Also, our c-approximation B will deliver a
schedule of length at most c(A(n+ 1) + 1).

On the other hand, if there is an optimal schedule
of length at most A(n + 1) + 1, it must schedule all
jobs either on machine m1 in the interval [0, A(n+1))
or on m2 in the interval [1, A(n + 1) + 1). Since the
total length of all jobs is 2(An + 1), both intervals
are filled exactly. Also, since n/2 + 1 jobs would have
total length more than (n/2 + 1)2A = (n+ 2)A, nei-
ther interval can contain more than n/2 jobs, so both
contain exactly n/2 jobs, which means they induce a
solution to I. So, for no-instances to ECP, the op-
timal makespan is at least c(A(n + 1) + 1) + 1, and
algorithm B must return a solution that has at least
this length.

In total, B decides in polynomial time whether I
is a yes-instance or not, which is impossible unless
P = NP. �

If we parametrize the problem by the fraction ρ ∈
(0, 1) of machines that is guaranteed not to have any
non-availability at all, Jansen and Diedrich [DJ09]
again give a 3/2+ε approximation (with running time
doubly exponential in 1/ε and 1/ρ) and show that an
approximation ratio of 3/2 − ε is not possible unless
P = NP.

Again, we can apply the algorithm described above
for fixed jobs also to the case of unavailability. The re-
laxed decision procedure is virtually the same: first,
“almost all” of the jobs are scheduled in the inter-
val [0, T ) using the multiple subset sum problem as
a subroutine. The remaining jobs are scheduled in
the interval [T, (3T/2)), but only on the ρm ma-
chines which are not affected by reservations. To
make this possible, the notion of “almost all” needs
to slightly stronger, i.e. the total size of unscheduled
jobs must be bounded by ρ/8 instead of 1/8, which
simply means we call the MSSP EPTAS subroutine
with a higher accuracy ρ/8. After applying the ex-
change step of Lemma 8, unpacked non-large jobs of
total area at most ρT/4 remain. Then, Lemma 10 can
be applied on the ρm machines which are guaranteed
to be available after time T .

The only other consideration that needs to be
made is the range over which the binary search is
to be conducted: since the “fixed jobs” do not count
towards the makespan, our bounds are different. Nev-
ertheless, it is sufficient to use the trivial lower bound
0 ≤ OPT and the upper bound OPT ≤ npmax which
is obtained by scheduling all jobs on one permanently
available machines using Graham’s List Schedule al-
gorithm. Again, the range is pseudopolynomial in the
instance size, so the number of binary search steps
needed in the outer loop of the algorithm is polyno-
mial in the input length. Hence, we obtain:
Theorem 3. Scheduling with non-availability, as
long as a constant fraction ρ ≥ 1/m of machines
is always available, admits a 3/2-approximation with
running time O(n logn + log(nmaxj=1,...,n pj)(n +
TMSSP (n, ρ/8))).

7 Conclusion

We have studied non-preemptive scheduling with
fixed jobs where the objective is to minimize the
makespan. For this problem, we obtain a polynomial
time algorithm with ratio 3/2, which is tight unless
P = NP holds. These techniques can also be used
for the closely related setting of scheduling with non-
availability; there, one needs to additionally assume
that a constant percentage of the machines is perma-
nently available.

In total, our approach yields a tight approxima-
tion result. However, our algorithm uses a very gen-
eral MKP EPTAS for a fixed value of ε = 1/8. It
is an interesting open question if the more restricted
problem MSSP admits a faster EPTAS or a faster
combinatorial 7/8-approximation that can be used to
speed up our algorithm. So far, the best known non-
PTAS result is a 3/4-approximation due to Caprara
et al. [CKP03] for the case of identical bin capacities.
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