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Abstract

We consider (Uniform) Sparsest Cut, Optimal Linear
Arrangement and the precedence constrained scheduling
problem 1|prec|

∑
wjCj . So far, these three notorious NP-

hard problems have resisted all attempts to prove inapprox-
imability results. We show that they have no Polynomial
Time Approximation Scheme (PTAS), unless NP-complete
problems can be solved in randomized subexponential time.
Furthermore, we prove that the scheduling problem is as
hard to approximate as Vertex Cover when the so-called
fixed cost, that is present in all feasible solutions, is sub-
tracted from the objective function.

1. Introduction

Sparsest Cut and Optimal Linear Arrangement 1 (OLA)
are typical cases of classical graph problems for which
we have neither a hardness of approximation result, nor a
‘good’ approximation algorithm. For Sparsest Cut, Arora,
Rao & Vazirani [5], by using a Semi-Definite Programming
(SDP) relaxation, provided a O(

√
log n)-approximation al-

gorithm, improving an O(log n)-approximation algorithm
by Leighton & Rao [19]. For OLA, Feige & Lee [13]
observed that combining the techniques in [5] with the
rounding algorithm of Rao and Richa [22] yields an
O(
√

log n log log n)-approximation algorithm. This im-
proves over the O(log n)-approximation of Rao and Richa.
These SDP relaxations were shown to have integrality gap
Ω(log log n) by Devanur, Khot, Saket & Vishnoi [10]. As
noted in [10], it remains a challenging open problem to
prove a hardness of approximation result for Sparsest Cut
and OLA. The currently known hardness results apply only

1Also known as Minimum Linear Arrangement.

to the non-uniform case of Sparsest Cut, and are based on
the Unique Games Conjecture [6, 17].

The third problem we address is the classical prob-
lem of scheduling precedence constrained jobs on a sin-
gle machine to minimize the weighted completion time,
known as 1|prec|

∑
wjCj in standard scheduling nota-

tion [14, 18]. While currently no inapproximability result
is known (other than that the problem does not admit a fully
polynomial time approximation scheme), there are several
2-approximation algorithms [21, 23, 15, 8, 7, 20, 1]. Nar-
rowing this approximability gap is considered one of the
most prominent open problems in scheduling (see e.g. [24]).

In this paper, we show that no PTAS is possible for
these problems assuming only the fairly standard assump-
tion NP 6⊆ ∩ε>0BPTIME(2nε

) (i.e. NP-complete prob-
lems cannot be solved in randomized sub-exponential time).
Our results use the recent Quasi-random PCP construction
of Khot [16], who proved important inapproximability re-
sults for Graph Min-Bisection, Densest Subgraph, and Bi-
partite Clique. However, the results in [16] or even the
stronger average-case assumptions used by Feige in [11]
are not known to generalize to Sparsest Cut and OLA (see
e.g. [10, 25]).

We show that the Quasi-random PCP [16], and careful
constructions provided in this paper, suffice to rule out the
existence of a PTAS for Sparsest Cut (Section 3) and OLA
(Section 4). Moreover, we prove that 1|prec|

∑
wjCj has

no PTAS by presenting a gap preserving reduction from
Maximum Edge Biclique (MEB) (Section 5.1) .

Feige [11] already showed that MEB is hard to approxi-
mate by assuming a hypothesis about average-case hardness
of Random 3SAT. Improving on the weaker result in [12],
we present the inapproximability of MEB (Section 2) based
on the more standard assumptions of Khot [16].

To summarize, the reductions presented in this paper are
the following.

Understanding the approximability of 1|prec|
∑

wjCj

is also interesting because of its relation to Vertex Cover.
The objective function of the scheduling problem is split
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into so-called fixed cost and variable cost (see Section 1.1
for details). Only the variable cost depends on the schedule,
whereas the fixed cost is the same for all feasible schedules.
In a series of three papers [8, 9, 1], it was established that
optimizing the variable cost is a special case of the Vertex
Cover problem. In this paper, we show that the variable
part is as hard to approximate as the the Vertex Cover prob-
lem (Section 5.2). This gives further evidence that the vari-
ous 2-approximation algorithms for 1|prec|

∑
wjCj might

be tight. For a fully satisfactory answer to this problem, a
deeper understanding on the interplay between the fixed and
the variable costs is needed.

Some of the proofs of these results are quite lengthy and
technical. The interested reader can find the omitted details
in the full version of the paper [4].

1.1 Preliminaries

We start with the definitions of the addressed problems.

Maximum Edge Biclique (MEB)
Input: A n by n bipartite graph G.
Output: A k1 by k2 complete bipartite subgraph of G.
Objective function: Maximize k1 · k2.

(Uniform) Sparsest Cut
Input: A graph G = (V,E).
Output: A cut, i.e., a partition of V into two disjoint sets

S and S̄.
Objective function: Minimize the sparsity E(S,S̄)

|S||S̄| , where
E(S, S̄) denotes the number of edges crossing the cut.

Optimal Linear Arrangement (OLA)
Input: A graph G = (V,E).
Output: A permutation of the vertices, i.e., a one-to-one

function π : V → {1, 2, . . . , |V |}.
Objective function: Minimize

∑
{u,v}∈E

|π(v)− π(u)|.

Single Machine Scheduling (1|prec|
∑

wjCj)
Input: A poset P = (N,P ) consisting of a set of jobs

N = {1, 2, . . . , n} and precedence constraints in the
form of a partial order P on N . Moreover, each job
j has a processing time pj and a weight wj , where pj

and wj are nonnegative integers.
Output: A feasible schedule represented by a linear exten-

sion L of P .

Objective function: Minimize∑
(i,j)∈L

piwj =
∑

(i,j)∈P

piwj +
∑

(i,j)∈L\P

piwj .

Remark 1.1 The first term of the objective function is
called fixed cost because it is independent of the schedule L.
The second term is the variable part. It depends on L and is
therefore the “interesting” part of the problem.

Khot [16] introduced the notion of Quasi-random PCPs.
The idea is to focus on the distribution of queries made
by the verifier. The distribution is required to depend on
whether the input to the PCP verifier is a YES or a NO input.
In the NO case, the queries are required to be distributed
randomly over the proof and in the YES case, the distribu-
tion is required to be far from random. The following PCP
construction will be the starting point for our reductions.

Theorem 1.2 (Khot [16]) For every ε > 0, there exists an
integer d = O( 1

ε log 1
ε ) such that there is a PCP verifier for

SAT instance of size n satisfying:

1. The proof Π for the verifier is of size 2nε

.

2. The verifier queries d bits from the proof. Let Q denote
the set of query bits.

3. Every query is uniformly distributed over Π (two dif-
ferent queries are of course correlated) 2.

4. (Yes Case/Completeness:) Suppose the SAT instance is
a YES instance and Π is a correct proof. Let Π0 be the
set of 0-bits in the proof (it contains half the bits from
the proof). Then

PrQ[Q ⊆ Π0] ≥ (1−O(1/d))
1

2d−1

The probability is taken over the random test of the
verifier.

5. (No Case/Soundness:) Suppose the SAT instance is a
NO instance, and let Π∗ be any set of half the bits from
Π. Then

1
2d
− 1

220d
≤ PrQ[Q ⊂ Π∗] ≤

1
2d

+
1

220d

1.2 Results and Proof Ideas

The main results of this paper are the following Theo-
rem 1.3 and Theorem 1.4.

2Since every query is uniformly distributed, all bits in the proof are
queried by the same number of tests.



Theorem 1.3 Let ε > 0 be an arbitrarily small constant.
If there is a PTAS for Sparsest Cut, Optimal Linear Ar-
rangement, Maximum Edge Biclique or 1|prec|

∑
wjCj

then SAT has a (probabilistic) algorithm that runs in time
2nε

where n is the instance size.

We prove that 1|prec|
∑

wjCj has no PTAS by presenting
a gap preserving reduction from Maximum Edge Biclique.
The hardness of approximation of the remaining problems
follows by presenting reductions from the Quasi-random
PCP [16]. They follow a general pattern that is sketched be-
low. We start by building a graph instance of the addressed
problem with vertices corresponding to proof bits and tests
of the Quasi-random PCP. The graph is created in such a
way that the vertices corresponding to tests have a relatively
low impact on the total solution cost. This is achieved,
for the considered problems, by having a relatively small
number of test vertices. Moreover, when test vertices are
disregarded, then any optimal solution is balanced, that is,
bit-vertices are evenly partitioned into two parts in the so-
lution. Furthermore, since test-vertices have low impact on
the total cost, one can prove that any “good” solution must
be quasi-balanced, i.e., bit-vertices are roughly evenly par-
titioned into two parts in the solution. By the construction
of the graph, test-vertices that are adjacent to just one side
of the partition have a lower cost (referred to as good test-
vertices). The gap follows by noting that, by Theorem 1.2,
there are more good test-vertices in the YES-instance; the
latter, together with the above construction, is sufficient to
introduce a gap.

We remark that since the gaps obtained by using Theo-
rem 1.2 are very small, we have not optimized our reduc-
tions in favour of simplicity. Moreover, the inapproxima-
bility factor for Maximum Edge Biclique can be boosted as
done for Bipartite Clique in [16].

Our second main result shows that the variable part of
the scheduling problem is as hard to approximate as Vertex
Cover.

Theorem 1.4 Problem 1|prec|
∑

wjCj , where we disre-
gard the fixed cost, is equivalent to Vertex Cover in terms
of approximability.

The proof of Theorem 1.4 heavily relies on the results
in [1, 9], which imply that optimizing the variable part of
1|prec|

∑
wjCj is equivalent, under a polynomial reduc-

tion, to optimizing a special case of the weighted Vertex
Cover problem.

We note that all the currently best known approximation
algorithms for several special precedence constraints were
obtained by exploiting the Vertex Cover nature of the prob-
lem, and deriving better than 2-approximation algorithms
for the variable part [3, 2]. It is a natural question to under-
stand if a better than 2-approximate solution for the general

version of the problem can be obtained in a similar vein.
Theorem 1.4 shows this to be unlikely.

2 Max Edge Biclique

In this section we reduce the PCP construction given
by Theorem 1.2 to the Maximum Edge Biclique problem.
Since the reduction and analysis are relatively easy, this sec-
tion serves as a good starting point before continuing to the
more complex reductions (that follow the same general pat-
tern) in Sections 3 and 4.

Construction. Let N be the proof size and M be the total
number of tests of the PCP verifier in Theorem 1.2. Both
N and M are bounded by 2O(nε). Let d be the integer as in

Theorem 1.2. Select w to be
(

β−α
12·d

)2

, where α := 1
2d + 1

220d

and β := (1−O(1/d)) 1
2d−1 .

Construct a n by n bipartite graph G as follows. The
left hand side (LHS) consists of N bit-vertices correspond-
ing to the bits in the PCP proof and M slack-vertices to
keep the bipartite graph balanced. (The slack-vertices are
not adjacent to any vertices and are thus not included in any
bipartite clique). The right-hand-side (RHS) consists of N
bit-vertices corresponding to the bits in the PCP proof and
M test-vertices corresponding to the tests of the PCP. Con-
nect a LHS bit-vertex to all RHS bit-vertices except the one
corresponding to the same bit of the proof and to a RHS
test-vertex if and only if the bit is not accessed by the test.
Finally, assume that w N

2 = M . (This can be achieved by
simply copying vertices: every bit-vertex is replaced by cN

copies of it, and every test-vertex is replaced by cM copies
of it such that now wN/2 = M holds. Any maximal bi-
clique must take none or all the copies of a vertex on either
partition of G).

Completeness. We will see that there is an edge biclique
of size at least

(1 + βw)
(

N

2

)2

.

This will be achieved by constructing a “balanced” solu-
tion, that is a biclique where the bit-vertices are partitioned
into two equal sized sets. By Theorem 1.2, half the bits
in the proof, namely the 1-bits in the proof, are such that
a fraction β of tests do not query any of them. Let Γ de-
note the set of all such tests with |Γ| = βM = βw N

2 .
Now consider the biclique, where the LHS consists of the
bit-vertices corresponding to the 1-bits in the proof and the
RHS consists of the remaining bit-vertices (corresponding
to the 0-bits in the proof) and the test-vertices correspond-
ing to the tests in Γ. This gives an edge biclique of size
N
2 ·
(

N
2 + βM

)
= N

2 ·
(

N
2 + βw N

2

)
= (1 + βw)

(
N
2

)2
.



Soundness. We will see that there is no edge biclique of
size (

1 +
α + β

2
w

)(
N

2

)2

.

Given a biclique let L,R, and B denote respectively the
number of bit-vertices of LHS, bit-vertices of RHS, and
test-vertices of RHS that are included in the biclique. Note
that in any optimal solution L + R = N . We say that a
biclique is quasi-balanced if ||L| − |R|| ≤ β−α

6d N .
The following lemma follows in a straightforward man-

ner from the fact that we have many more bit-vertices than
test-vertices in our constructed biclique instance. Its proof
can be found in the full version [4].

Lemma 2.1 An optimal edge biclique is quasi-balanced.

We now proceed by bounding the value of quasi-
balanced edge bicliques. Since queries are uniformly dis-
tributed, a fraction p of bit-vertices is queried by at most a
fraction pd of tests. A test-vertex can be included in a bi-
clique only if it is adjacent to all bit-vertices in the LHS
of the biclique, in other words the test only queries bits
included in the RHS of the biclique. By applying Theo-
rem 1.2 we get that any edge biclique with L = 1−p

2 N and

R = 1+p
2 N has B ≤

(
α + |p|

2 d
)

M ≤ (α + |p|d)w N
2 .

Assuming |p| ≤ β−α
6d (Lemma 2.1) we have the follow-

ing (rough) bound on the value of any edge biclique of G:

L(R + B) ≤ 1 + p

2
N

(
1− p

2
N + (α + |p|d)w

N

2

)
≤ (1 + (1 + |p|)(α + |p|d)w)

(
N

2

)2

<

(
1 +

α + β

2
w

)(
N

2

)2

.

3 Sparsest Cut

We note that the reduction presented in this section is
also valid, with almost the same analysis, for the related
problem of finding a cut that minimizes the flux E(S,S̄)

min(|S|,|S̄|)
(see e.g. [5]).

Construction. Let N be the proof size and M be the total
number of tests of the PCP verifier in Theorem 1.2. Fur-
thermore, let d be the number of bits each test queries as
in that theorem. Note that both M and N are bounded by

2O(nε). Select k =
(

10d
β−α

)8

and h = k
(
k2 + k + 1

4

)
,

where α = 1
2d + 1

220d and β = (1 − O(1/d)) 1
2d−1 as in

Theorem 1.2. The graph G = (V,E) consists of a bipar-
tite graph Gb and two “huge” cliques of size kMN called
Cl and Cr . The graph Gb is a bipartite graph where the

LHS consists of M test-vertices corresponding to the tests
of the PCP. The RHS consists of N clusters, one for each
bit in the PCP proof, where each cluster consists of M bit-
vertices. Place edges between a test-vertex to all vertices of
a cluster if and only if the bit, corresponding to that cluster,
is accessed by the test.

Finally, we construct the graph G by connecting the bi-
partite graph Gb to Cl and Cr as follows. Each bit-vertex
has hM

N edges to Cl and hM
N edges to Cr, and each test-

vertex has (d− β−α
5d )M edges to Cr. Furthermore, we dis-

tribute the edges incident to the cliques so that the difference
of degree of two vertices of a clique is at most one. We will

Cl Cr

N bit-clusters

with M vertices each

M test-vertices

Figure 1. The graph G for Sparsest Cut.
Cliques, Bit-vertices, and test-vertices are
depicted by polygons, squares and dia-
monds, respectively.

prove that there is a gap between the yes/completeness and
no/soundness case (see (1) and (2)).

Completeness. We will see that there is a cut with sparsity
at most

1
N2

k +

(
d
2 − β β−α

5d

)
k2 + k + 1

4

 . (1)

By Theorem 1.2, half the bits in the proof, namely the
0-bits in the proof, are such that a fraction β of tests do ac-
cess all queries from them. Let Γ denote the set of all such
tests with |Γ| = βM . We now partition the vertices of G as
follows. Let S contain the vertices of Cl, the vertices of the
clusters corresponding to the 0-bits, and the test-vertices of
Γ. Since the cliques are on different sides of the cut and
the solution is “balanced”, i.e., the bit-vertices are parti-
tioned into two sets of equal size, we have that |S||S̄| ≥(
kMN + MN

2

) (
kMN + MN

2

)
= M2N2(k2 + k + 1

4 ).
We constinue by calculating E(S, S̄). Since all ver-

tices of Cl are in S and all vertices of Cr are in S̄, we
have that the number of edges between bit-vertices and
the cliques that crosses the cut is MN · hM

N = hM2.
Consider the edges incident to test-vertices. By Theo-
rem 1.2, the queries are uniformly distributed and thus the



total number of edges between the test-vertices and the bit-
vertices corresponding to the 0-bits is dM2

2 . By observing
that the test-vertices of Γ have βdM2 edges to those bit-
vertices and β

(
d− β−α

5d

)
M2 edges to Cr, the total num-

ber of edges incident to test-vertices that cross the cut is
dM2

2 − βdM2 + β
(
d− β−α

5d

)
M2 = M2

(
d
2 − β β−α

5d

)
.

Summing up the above observations, we get E(S, S̄) =
M2

(
h + d

2 − β β−α
5d

)
and it follows that the sparsity of the

cut is at most (1).

Soundness. We will see that all cuts have sparsity at least

1
N2

(
k +

d
2 −

α+β
2

β−α
5d

k2 + k + 1
4

)
. (2)

We start by proving a useful property, which is later used
in the soundness analysis to bound the number of “good”
test-vertices. Since the construction of G does not neces-
sarily enforce that all bit-vertices of a bit-cluster are placed
on the same side of the cut, we cannot apply Theorem 1.2 in
a straightforward way. The following lemma is a property
of graph Gb (the same bipartite construction and property
will be used for OLA in Section 4).

Lemma 3.1 Consider the bipartite graph Gb, let B be a set

of bit-vertices with |B| ≤ 1+q
2 NM , where q =

(
β−α
10d

)2

,
and let T be the set of test-vertices that have at least(
d− β−α

10d

)
M edges to the bit-vertices of B. Then for a

NO-instance we have that |T | < 2α+β
3 M .

In the first step of the soundness analysis, we will prove
that for a cut to be small, it needs to be what we call quasi-
balanced. We then prove that for quasi-balanced cuts the
value of E(S, S̄)/(|V |/2)2, which is a lower bound on the
sparsity of a cut (S, S̄), is bounded from below by (2).

We say that a cut (S, S̄) is quasi-balanced if it has the
following properties:

1. The cliques Cl and Cr are placed on different sides
of the cut. Assume for simplicity that the vertices of
Cl are included in S and thus the vertices of Cr are
included in S̄.

2. Let L and R be the bit-vertices in S and S̄, respec-

tively, then ||L| − |R|| <
(

β−α
10d

)2

NM .

The proof of the following lemma can be found in the full
version [4].

Lemma 3.2 An optimal cut is quasi-balanced.

By the above lemma we only need to consider quasi-
balanced cuts. We continue by proving that the sparsity

of such a cut is at least (2). This is achieved by bounding
E(S, S̄) as follows. Let S, S̄ be a quasi-balanced cut and let
Γ be the set of test-vertices that have at least

(
d− β−α

10d

)
M

edges to the bit-vertices of L. By the fact that the cut is
quasi-balanced we have that 1−q

2 NM ≤ |L| ≤ 1+q
2 NM ,

where q =
(

β−α
10d

)2

, which is sufficient for applying

Lemma 3.1 and we get that |Γ| ≤ 2α+β
3 M . Since, by

Theorem 1.2, the queries are uniformly distributed, the to-
tal number of edges between the test-vertices and the bit-
vertices of L is at least (1−q)dM2

2 . If all test-vertices are
placed in S̄, all of these edges would cross the cut. The only
way to decrease their number is to move test-vertices to S.
But since every test-vertex has

(
d− β−α

5d

)
M edges to Cr,

this is only profitable for test-vertices which have less than
β−α
10d M edges to the bit-vertices of R, i.e., test-vertices that

are in Γ. By the above argument we can assume when cal-
culating a lower bound of E(S, S̄) that the only test-vertices
placed in S are those in Γ and it is easy to see that assum-
ing they are not adjacent to any bit-vertices of R might only
decrease E(S, S̄).

As in the completeness case, we have that the number of
edges between bit-vertices and the cliques that crosses the
cut is MN · hM

N = hM2.
To summarize we have the following.

• The number of edges, incident to test-vertices that
cross the cut, is at least M2

(
(1−q)d

2 − 2α+β
3

β−α
5d

)
.

• The number of edges, between bit-vertices and the
cliques that cross the cut, is hM2.

Since q is very small and |S||S̄| ≤ (|V |/2)2 we have
that the sparsity of any cut of G can be bounded from below
by (2) (calculations omitted).

4 Optimal Linear Arrangement

For simplicity, we consider the weighted version of
OLA. That is, edges have weights and the objective
is to find a permutation π of the vertices to minimize∑

{u,v}∈E wuv|π(v)−π(u)|. We first present the construc-
tion of the OLA instance and then we sketch the complete-
ness and soundness analyzes. Details together with the gen-
eralization to the unweighted version can be found in the
full version of the paper.

Construction. Let N be the proof size and M be the total
number of tests of the PCP verifier in Theorem 1.2. Fur-
thermore, let d be the number of bits each test queries as
in that theorem. Note that both M and N are bounded by

2O(nε). Select k to be
(

10d
β−α

)8

, where α = 1
2d + 1

220d and



β = (1−O(1/d)) 1
2d−1 as in Theorem 1.2. The final graph

G consists of the graphs Gb, Gl, and Gr constructed as fol-
lows.

• The graph Gb is a bipartite graph where the LHS con-
sists of M test-vertices corresponding to the tests of
the PCP. The RHS consists of N clusters, one for each
bit in the PCP proof, where each cluster consists of
M bit-vertices. Place edges, weighted by 1, between
a test-vertex to all vertices of a cluster if and only if
the bit, corresponding to that cluster, is accessed by
the test. (Note that Gb is the same bipartite graph as in
Section 3.)

• The graph Gl consists of a vertex Cl and 2kMN addi-
tional slack-vertices We place an edge from each slack
vertex to Cl and weight these edges by k4 M

N .
• The graph Gr is constructed as Gl, where instead of

Cl we have Cr.

Finally, we construct the graph G by connecting the bipar-
tite graph Gb to Gl and Gr as follows. Each test-vertex has
edges to Cr and Cl, weighted by (d− β−α

10d )M and β−α
10d M ,

respectively. Each bit-vertex has an edge to Cr of weight
k2 M

N .

Cl Cr

N bit-clusters

with M vertices each

M test-vertices

kMN kMN kMN kMN

Figure 2. The graph G for OLA. Slack-
vertices, bit-vertices, and test-vertices
are depicted by polygons, diamonds, and
squares, respectively.

We will prove that there is a gap between the
yes/completeness and no/soundness case (see (3) and (4)).
W.l.o.g, we restrict ourself to only consider linear arrange-
ments where Cl is placed to the left of Cr. The case when
Cl is to the right of Cr is symmetric. We use the following
convention to simplify notation. Let π be a linear arrange-
ment of G. For sets A,B of vertices we write A <π B
(subscript omitted when π is clear from the context) when-
ever ∀u ∈ A,∀v ∈ B : π(u) < π(v).

Completeness. We will see that there is a linear arrange-
ment with value at most

M3N

»
2k6 + k3 +

k2

4
+

„
d +

„
1−

2β + α

3

«
β − α

5d

«
k

–
. (3)

This will be achieved by constructing a so called balanced
linear arrangement. We say that a linear arrangement π is
balanced if the slack-vertices of Gi can be partitioned into
two sets Si

L, Si
R of equal size, for i ∈ {l, r}; and bit-vertices

can be partitioned into two equal sized sets BL and BR so
that

Sl
L < {Cl} < Sl

R < BL < Sr
L < {Cr} < Sr

R < BR.

(Note that an optimal linear arrangement of the subgraph of
G induced by all but the test-vertices is balanced).

By Theorem 1.2, half the bits in the proof, namely the
0-bits in the proof, are such that a fraction β of tests do
access all queries from them. Let Γ denote the set of all
such test-vertices with |Γ| = βM and let Γ̄ be the set of the
remaining test-vertices. Now consider the balanced linear
arrangement π of G:

Sl
L <{Cl}<Sl

R <BL <Γ<Sr
L < Γ̄<{Cr}<Sr

R <BR

where we let BL and BR be the sets of bit-vertices corre-
sponding to 0-bits and 1-bits in the proof, respectively.

Lemma 4.1 The cost of π is at most (3) (for big enough M
and N ).

Proof Sketch. We need to bound the cost of each edge in
the linear arrangement π.

1. The cost of edges incident to slack-vertices is at most

4k4 M
N

kMN∑
i=1

(i + M) = M3N · 2k6 + o(M3N).

2. The cost of edge between bit-vertices and Cr is at most

2k2 M
N

MN/2∑
i=1

(i + kMN + M) = M3N(k3 + k2

4 ) +

o(M3N).
3. The cost of edges incident to test-vertices of Γ is

at most (calculations omitted) βM3N(dk + d) +
o(M3N).

4. The cost of edges incident to test-vertices
of Γ̄ is at most (calculations omitted)
(1− β)M3N

((
d + β−α

5d

)
k + d

)
+ o(M3N).

We have considered all types of edges of G and the state-
ment follows by summing up the above costs. �

Soundness. We will see that all linear arrangements of G
have value at least

M3N

»
2k6 + k3 +

k2

4
+

„
d + (1−

α + β

2
)
β − α

5d

«
k

–
. (4)

In the first step of the soundness analysis, we will prove
that for a linear arrangement to have low cost, it needs to be
what we call quasi-balanced. We then prove that the cost of



a quasi-balanced linear arrangement is bounded from be-
low by (4).

Select q =
(

β−α
10d

)2

, i.e., a small number. We say that a
linear arrangement π is quasi-balanced if the slack-vertices
of Gi can be partitioned into two sets Si

L, Si
R with ||Si

L| −
|Si

R|| ≤ qkNM , for i ∈ {l, r}; and the bit-vertices can be
partitioned into two sets BL and BR with ||BL| − |BR|| ≤
qNM so that

Sl
L < {Cl} < Sl

R < BL < Sr
L < {Cr} < Sr

R < BR.

Note that a balanced linear arrangement is quasi-balanced
with ||Sl

L| − |Sl
R|| = ||Sr

L| − |Sr
R|| = ||BL| − |BR|| = 0.

The following lemma implies that we only have to consider
quasi-balanced linear arrangements of G (its proof can be
found in the full version [4]).

Lemma 4.2 An optimal linear arrangement of G is quasi-
balanced.

We proceed by bounding the cost of a quasi-balanced
linear arrangement from below by (4). Given a quasi-
balanced linear arrangement π of G, let Γ be the set of test-
vertices that have at least

(
d− β−α

10d

)
M edges to BL in π.

Since |BL| ≤ 1+q
2 NM , we can apply Lemma 3.1 and get

|Γ| < 2α+β
3 M . The following lemma can easily be veri-

fied by considering the cost of all different positions of a
test-vertex.

Lemma 4.3 In any quasi-balanced linear arrangement π
of G, the cost of the edges incident to a test-vertex t is at
least {

(1− q)M2Ndk if t ∈ Γ,

(1− q)M2N
(
d + β−α

5d

)
k if t 6∈ Γ .

The above lemma together with |Γ| < 2α+β
3 M , imply

that the total cost of the edges incident to test-vertices is at
least

(1− q)M3N

(
d +

(
1− 2α + β

3

)
β − α

5d

)
k. (5)

As noted in the completeness analysis (an optimal solu-
tion to the subgraph of G induced by all but the test-vertices
is balanced), the cost of the remaining edges is minimized
by a balanced linear arrangement and is thus bounded from
below by

4k4 M

N

kMN∑
i=1

i + 2k2 M

N

MN/2∑
i=1

(i + kMN), (6)

which is greater than M3N(2k6 + k3 + k2

4 ). Since q is se-
lected to be very small the total cost (the sum of (5) and (6))
of any linear arrangement π of G can be bounded to be at
least (4).

5 Single Machine Scheduling with Prece-
dence Constraints

In the first part of this section we rule out a PTAS for
1|prec|

∑
wjCj , by presenting a gap-preserving reduction

from MEB. The claim follows by proving (see Section 2)
that for MEB it is hard to distinguish between graphs with
an edge biclique of size ≥ an2 from those having value
< bn2, for some a > b. In the second part, we show that
the variable part of the scheduling problem is equivalent to
Vertex Cover in terms of approximability.

5.1 Ruling out a PTAS for the Scheduling
Problem

Given a MEB instance G = (V,W,E) with |V | =
|W | = n, we construct (in polynomial time) an instance
S of 1|prec|

∑
wjCj such that the following holds.

Lemma 5.1 Let optm denote the value of the largest edge
biclique in G and let opts be the value of the optimum
schedule for S. Then for any k > 0

optm < bn2 ⇒ opts >
(
k2 + 2k + 2− b

)
n2 (7)

optm ≥ an2 ⇒

opts ≤
(

k2 + 2k + 2− a +
1
k2

+
2
k

)
n2. (8)

Hence choosing k large enough such that 1
k2 + 2

k < a−b
will result in a gap-preserving reduction.

Construction. Let V = {v1, v2, . . . , vn} and W =
{w1, w2, . . . , wn}. We construct the scheduling instance S
as follows. The set of jobs are given by N = D ∪U , where

U = {w1, w2, . . . , wn} ∪ {V} ∪ {v̄1, v̄2, . . . , v̄n} and
D = {v1, v2, . . . , vn} ∪ {W} ∪ {w̄1, w̄2, . . . , w̄n}.

Note that |D| = |U | = 2n + 1 and let k be a large number
to be determined later. The processing times and weights of
the jobs are given by the following table.

Job Proc. time Weight
V 0 kn
w1, w2, . . . , wn 0 1/k
v̄1, v̄2, . . . , v̄n 0 1
W kn 0
v1, v2, . . . , vn 1/k 0
w̄1, w̄2, . . . , w̄n 1 0



The precedence constraints are given by the poset P =
(N,P ), where

P = {(vi, wj) : {vi, wj} 6∈ E}
∪ {(w̄i,V) : i = 1, . . . , n}
∪ {(W, v̄i) : i = 1, . . . , n}
∪ {(vi, v̄i) : i = 1, . . . , n}
∪ {(w̄i, wi) : i = 1, . . . , n)}
∪ {(W,V)}.

See Figure 3 for an example.

v1 v2 v3

w1 w2 w3

v1 v2 v3

w1 w2 w3 v̄1 v̄2 v̄3

w̄1 w̄2 w̄3 W

V

Max Edge Biclique 1|prec|∑wjCj

Figure 3. Construction of scheduling in-
stance.

By the processing times and weights we have that pi ·
wj ≤ 1/k or (i, j) ∈ P for all pairs of jobs (i, j) ∈ N ×
N \H where

H = {(vi,V), (W, wj), (w̄j , v̄i) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The following lemma shows that large edge bicliques in
G imply schedules with low cost in S and vice versa.

Lemma 5.2 There exists an edge biclique in G with value
at least µ if and only if there exists a linear extension L of
P so that

∑
(i,j)∈H∩L

piwj ≤ 2n2 − µ.

Since total the cost of all incomparable pairs (i, j) 6∈
H is O(n2/k), this lemma allows to prove the bounds (8)
and (7) quite easily.

See the full version of the paper [4] for the proofs of
Lemmas 5.2 and 5.1.

5.2 Hardness of Variable Part

In this section we prove the following theorem.

Theorem 5.3 Approximating the variable cost of
1|prec|

∑
wjCj is as hard as approximating Vertex

Cover.

The proof of this theorem is based on quite recent results
which are outlined here. Consider any scheduling instance

and let P = (N,P ) be the poset that specifies the corre-
sponding precedence constraints. We can associate with P
a graph GP, called the graph of incomparable pairs, defined
as follows (see also [26, 9, 3]). The vertices of GP are the
incomparable pairs in P. In GP there is an edge between
two incomparable pairs if no linear extension of P reverses
both pairs. Given a scheduling instance S with poset P ,
let GW

S be the graph of incomparable pairs GP where each
vertex (i, j) has weight piwj .

In a series of three papers [8, 9, 1], the following theorem
was proven.

Theorem 5.4 Any vertex cover of GW
S with weight ω can

be turned into a solution to S with variable cost at most ω
and vice versa. Both transformations are polynomial.

Proof of Theorem 5.3. Theorem 5.4 immediately implies
that minimizing the variable part of 1|prec|

∑
wjCj is a

special case of Vertex Cover and therefore is not harder to
approximate.

It remains to prove the other direction. Let G = (V,E)
be a Vertex Cover instance and let n = |V |. We will con-
struct a scheduling instance S as follows. The construction
is inspired by the so-called adjacency poset of G. Choose
k > n2r/ε. For each vertex vi ∈ V , there are two jobs
v′i and v′′i . The processing time and weight for a job v′i are
1/ki and 0, respectively. Similarly, the processing time and
weight for a job v′′i are 0 and ki, respectively.

S has the following precedence constraints: For each
edge {vi, vj} ∈ E, the precedence constraints v′i → v′′j
and v′j → v′′i . Finally, we add v′i → v′′j for every i, j with
i < j. See Figure 4 for a small example.

v1 v2 v3

v′
1 v′

2 v′
3

v′′
1 v′′

2 v′′
3

(v′
1, v

′′
1 ) (v′

2, v
′′
2 ) (v′

3, v
′′
3 )

(v′
3, v

′′
1 )

G S GW
S

Figure 4. The transformation of a graph G.

Now consider the graph GW
S . It has at most n2 ver-

tices. The n vertices corresponding to the incomparable
pairs (v′i, v

′′
i ) have weight 1. All other vertices have weight

at most 1/k, which by the choice of k is very small. The
total weight of these light vertices is no more than n2/k.

Moreover, the subgraph induced by the vertices with
weight 1 is isomorphic to G. To see this, recall that there is
an edge between the vertices (v′i, v

′′
i ) and (v′j , v

′′
j ) of GW

S

if and only if both precedence constraints v′i → v′′j and
v′j → v′′i are present in S. This in turn is the case if and
only if (vi, vj) ∈ G.

Using the connection between S and GW
S provided by

Theorem 5.4 and the close relation between GW
S and G,



it is easy to see that an r-approximation algorithm for the
optimum variable cost of 1|prec|

∑
wjCj would imply an

approximation algorithm for Vertex Cover with approxima-
tion ratio r(1 + n2/k) < (r + ε). �
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