
(Acyclic) Job Shops are Hard to Approximate

Monaldo Mastrolilli and Ola Svensson
IDSIA

Lugano, Switzerland,
{monaldo,ola}@idsia.ch

Abstract

For every ε > 0, we show that the (acyclic) job shop
problem cannot be approximated within ratio O(log1−ε lb),
unless NP has quasi-polynomial Las-Vegas algorithms,
and where lb denotes a trivial lower bound on the opti-
mal value. This almost matches the best known results for
acyclic job shops, since an O(log1+ε lb)-approximate solu-
tion can be obtained in polynomial time for every ε > 0.

Recently, a PTAS was given for the job shop problem,
where the number of machines and the number of opera-
tions per job are assumed to be constant. Under P 6= NP ,
and when the number µ of operations per job is a constant,
we provide an inapproximability result whose value grows
with µ to infinity. Moreover, we show that the problem with
two machines and the preemptive variant with three ma-
chines have no PTAS, unless NP has quasi-polynomial al-
gorithms. These results show that the restrictions on the
number of machines and operations per job are necessary
to obtain a PTAS.

In summary, the presented results close many gaps in our
understanding of the hardness of the job shop problem and
resolve (negatively) several open problems in the literature.

1 Introduction

In the job shop scheduling problem there is a set of
n jobs that must be processed on a given set M of ma-
chines. Each job Jj consists of a sequence of µ operations
O1j , O2j , . . . , Oµj that need to be processed in this order.
Operation Oij must be processed without interruption on
machine mij ∈ M , during pij ∈ Z+ time units. Each ma-
chine can process at most one operation at a time, and each
job may be processed by at most one machine at any time.
A job shop instance is acyclic if each job has at most one op-
eration per machine. For any given schedule, let Cj be the
completion time of the last operation of job Jj . The goal is
to find a feasible schedule which minimizes the makespan
Cmax = maxj Cj . In standard scheduling notation [8], this

problem is denoted as J ||Cmax (and J |acyclic|Cmax).
The job shop scheduling problem is a widely studied

combinatorial optimization problem (see e.g. [11]). It is
strongly NP-hard even for two machines [7]. If D denotes
the length of the longest job (the dilation), and C denotes
the time units requested by all jobs on the most loaded ma-
chine (the congestion), then lb = max[C,D] is a lower
bound on the shortest makespan. For unbounded number
of machines, Shmoys et al. [17] and Goldberg et al. [6] ob-
tained the best approximation algorithms known with per-
formance guarantee Õ((log lb)2) for general jobs shops1,
where the Õ notation is used to suppress log log lb terms.
For acyclic job shops, Feige & Scheideler [4] and Czu-
maj & Scheideler [3] improved this result to an Õ(log lb)-
approximation algorithm. In the case of acyclic job shops
with unit processing times for every operation, the famous
paper by Leighton, Maggs, and Rao [12] shows the exis-
tence of solutions with makespan O(lb). Leighton, Maggs,
and Richa [13] later gave an algorithmic variant yielding a
constant factor approximation algorithm.

It is a long standing open problem if the above algo-
rithms for J ||Cmax and J |acyclic|Cmax, are tight or even
nearly tight (see “Open problem 7” in [16]). The only
known inapproximability result is due to Williamson et
al. [18], and states that when the number of machines and
jobs are part of the input, it is NP-hard to approximate the
acyclic job shop scheduling problem with unit time, and at
most three operations per job, within a ratio better than 5/4.

In the preemptive variant of the problem (denoted
J |pmtn|Cmax), every operation can be temporarily inter-
rupted and resumed later without any penalty. For any
ε > 0, it is well-known that with only ε loss in the approx-
imation factor, the preemptive job shop scheduling prob-
lem is equivalent to the nonpreemptive job shop scheduling
problem with unit processing times (see e.g. [2]), and there-
fore the 5/4-inapproximability in [18] applies to the pre-
emptive version as well. For the acyclic job shop schedul-

1We note that we can assume log lb = O(logmµ) [17], where m is
the number of machines and µ is the maximum number of operations per
job.

2008 49th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/08 $25.00 © 2008 IEEE

DOI 10.1109/FOCS.2008.36

583

2008 49th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/08 $25.00 © 2008 IEEE

DOI 10.1109/FOCS.2008.36

583

ing with preemption, the best known result is due to Feige
& Scheideler [4] who showed that there always exists a
preemptive schedule within a O(log log lb) factor of lb.
For the general preemptive job shop problem, Bansal et
al. [2] showed an O(log |M |/ log log |M |)-randomized ap-
proximation algorithm, and a (2 + ε)-approximation for
a constant number of machines. It is another open prob-
lem [2, 16] to understand whether there is a PTAS for the
general nonpreemptive and preemptive job shop with a con-
stant number of machines. For those instances where the
number of machines and µ are constant, polynomial time
approximation schemes are known [9, 5] for both, the pre-
emptive and nonpreemptive case.

In this paper we give an answer to “Open problem
7” raised in [16]. More precisely, let ε > 0 be an
arbitrarily small constant. We show that the (acyclic)
job shop problem cannot be approximated within ratio
O(log1−ε lb), unless NP ⊆ ZTIME(npolylog n). This
almost matches (up to smaller terms) the best known re-
sults for J |acyclic|Cmax [4, 3], since an O(log1+ε lb)-
approximate solution can be obtained in polynomial time
for every ε > 0. If one is only willing to believe that
P 6= NP then, for fixed number of operations per job, we
provide an inapproximability result whose value grows with
the number of operations per job to infinity.

Finally, we show that the job shop problem with two ma-
chines (J2||Cmax), and the preemptive variant with three
machines (J3|pmtn|Cmax) have no PTAS, unless NP ⊆
DTIME(nO(logn)). These results show that the restric-
tions in [9], on the number of machines and operations, are
necessary to obtain a PTAS, and solve (negatively) an open
question raised in [2].

Many questions remain open. For the following two
well-known problems our understanding is especially weak.
The flow shop scheduling problem is a variant of the acyclic
job shop problem where each job has exactly one operation
for every machine, and all jobs go through all the machines
in the same order. The best known approximation algorithm
for this problem is the algorithm provided for the acyclic
job shop [4], and the best inapproximability result says that
it cannot be approximated better than 5/4 [18]. 2 A similar
situation holds for the general preemptive job shop schedul-
ing problem.

1.1 Preliminaries

When considering a job shop instance we shall useC∗max
to denote the minimum makespan over all feasible sched-
ules. For a given graph G, we let χ(G) and α(G) denote

2Preliminary results of the authors show that the more general variant
of the flow shop problem where each job is not required to go through all
the machines has similar inapproximability results as for the acyclic job
shop.

the chromatic number of G and the size of a maximum in-
dependent set of G, respectively. We shall also denote the
maximum degree of graph G by ∆(G), where we some-
times drop G when it is clear from the context.

Our reductions to the job shop problem with unbounded
number of machines use results by Khot [10], who proved
that it is NP-hard to color a K-colorable graph with
K

1
25 (log k) colors, for sufficiently large constants K. In fact

the following stronger statement is a direct consequence of
the soundness analysis presented in the same paper.

Theorem 1.1 ([10]) For all sufficiently large constants K,
it is NP-hard to decide if a graph can be colored using
K colors or has no independent set containing a fraction
1/K

1
25 (logK) of the vertices. Moreover this hardness result

holds for graphs with bounded degree, in fact graphs with
degree at most 2K

O(logK)
.

By using a stronger assumption we can let K be a function
of the number of vertices. Again the stronger statement (not
explicitly stated in [10]) follows from the soundness analy-
sis.

Theorem 1.2 ([10]) There exists an absolute constant
γ > 0 such that for all K ≤ 2(logn)γ , it is hard to decide
if an n-vertex graph can be colored using K colors or has
no independent set containing a fraction 1/KΩ(logK) of the
vertices, unless NP ⊆ DTIME(2O(logn)O(1)

).

Our reductions to J2||Cmax and J3|pmtn|Cmax use the fol-
lowing result by Alimonti and Kann [1].

Theorem 1.3 ([1]) There exist positive constants α, β with
α > β, so that it is NP -hard to decide whether an n-vertex
cubic graph has an independent set of size α · n or has no
independent set of size β · n.

1.2 Results and Proof Ideas

Our first result shows that acyclic job shops have no con-
stant approximation algorithm, unless P = NP .

Theorem 1.4 For all sufficiently large constants K, it is
NP-hard to decide if an acyclic job shop instance can be
scheduled with makespan K · lb or has no schedule with
makespan (1/8)K

1
25 (logK) · lb. Moreover this hardness re-

sult holds for acyclic job shop instances with bounded µ,
that only depends on K.

The main idea of the reduction is as follows. Given a graph
G with bounded degree ∆, we construct a job shop instance
S, where all jobs have the same length D and all machines
the same load C = D. Hence, lb = C = D. Instance
S has a set of jobs for each vertex in G with the property
that two jobs can be scheduled in parallel, i.e., their opera-
tions can overlap in time, if and only if their corresponding

584584

vertices are not adjacent. This property is achieved by in-
troducing different “types” of jobs, a technique previously
used in [4]. For the reduction to be polynomial it is crucial
that the number of types is relatively few, However, to en-
sure the desired properties, jobs corresponding to adjacent
vertices must be of different types. We resolve this by using
that G has bounded degree. Since the graph G has degree
at most ∆ we can in polynomial time partition its vertices
into ∆ + 1 independent sets. As two jobs only need to be
assigned different types if they correspond to adjacent ver-
tices, we only need a constant (∆ + 1) number of types.

The analysis follows naturally: A set of jobs correspond-
ing to an independent set can be scheduled in parallel.
Hence, if the graph G can be colored with K colors then
there is a schedule of S with makespan K · lb. Finally, if
there is a schedule with makespan K

1
25 (logK) · lb then at

least a fraction Ω(1/K
1
25 (logK)) of the jobs overlap. As the

jobs overlap, they correspond to a fraction Ω(1/K
1
25 (logK))

of vertices that form an independent set.
By using a similar reduction but using Theorem 1.2

and setting K = log n we give a hardness result that al-
most matches the O(log lb log log lb)-approximation algo-
rithm for acyclic job shops.

Theorem 1.5 Let ε > 0 be an arbitrarily small con-
stant. There is no (log lb)1−ε-approximation algo-
rithm for the acyclic job shop problem, unless NP ⊆
ZTIME(2O(logn)O(1/ε)

).

The tricky part is that the graph has no longer small bounded
degree. We overcome this difficulty by a randomized pro-
cess that preserves the desired properties of the graph with
an overwhelming probability (see Lemma 2.1).

Remarks. The analyses of Theorem 1.4 and Theorem 1.5
are straightforward to extend to the job shop prob-
lem with objective to minimize the sum of completion
times. Hence, we have that J |acyclic|

∑
Cj has no con-

stant approximation algorithm, unless P = NP , and
no (log lb)1−ε-approximation algorithm, unless NP ⊆
ZTIME(2O(logn)O(1/ε)

). The latter result is almost
tight, since an Õ(log lb)-approximation algorithm for
J |acyclic|

∑
wjCj was presented in [15].

Theorem 1.4 and Theorem 1.5 establish a nice relation-
ship between the job shop problem and the coloring prob-
lem. It is tempting to believe that a short schedule also im-
plies that the associated graph has a small chromatic num-
ber. This is not the case. However, a short schedule implies
that the associated graph has a small fractional chromatic
number. �

In [9], a PTAS was given for the job shop problem, where
the number of machines and the number of operations per
job are both assumed to be constant. Our second result

shows that both these restrictions are necessary to obtain a
PTAS, and solve (negatively) an open question raised in [2].

Theorem 1.6 Problems J2||Cmax and J3|pmtn|Cmax

have no PTAS unless NP ⊆ DTIME(nO(logn)).

The reductions are from the independent set problem in cu-
bic graphs. We give a high level description of the reduction
to J2||Cmax. The reduction to J3|pmtn|Cmax is more in-
volved, but the basic structure is the same. Due to space
limitations the reduction for J3|pmtn|Cmax can be found
in the full version of the paper [14].

Given a cubic graph G we construct an instance S of
J2||Cmax as follows. The instance has a “big” job, called
Jb, whose length will equal the makespan in the complete-
ness case. Its operations are divided into four parts, called
the edge-, tail-, slack-, and remaining-part. There is also a
vertex job for each vertex. We again use the technique of
introducing different “types” of jobs. This time to ensure
that, without delaying job Jb, two jobs corresponding to ad-
jacent vertices cannot both complete before the end of the
tail-part of job Jb.

The analysis now follows from selecting the lengths of
the different parts of Jb such that in the completeness case
we can schedule all jobs, corresponding to a “big” inde-
pendent set of G, in parallel with the edge- and tail-part of
job Jb and the remaining jobs are scheduled in parallel with
the slack- and remaining-part of job Jb. On the other hand,
in the soundness case, as G has no “big” independent set,
we can, without delaying the schedule, only schedule rel-
atively few jobs in parallel with the edge- and tail-part of
job Jb. The remaining jobs, relatively many, will then re-
quire more time units than than the total length of the slack-
and remaining-part of job Jb and it follows that the schedule
will have makespan larger than the length of Jb.

The reduction runs in time nO(t), where t is the number
of types. With our current techniques we need O(log n)
types and hence the assumption used in the statement.

2 Unbounded Number of Machines

Here, we prove Theorem 1.4 and Theorem 1.5. When
using probabilistic arguments for graphs with n vertices, we
shall use the term overwhelming (negligible, respectively)
to denote probability that tends to 1 (to 0, respectively) as n
tends to infinity.

We present a gap-preserving reduction, Γ, from the
graph coloring problem to the acyclic job shop problem,
that has two parameters r and d. Given an n-vertex graph
G whose vertices are partitioned into at most d independent
sets, it computes deterministically if both r and d are con-
stants and probabilistically otherwise, in time polynomial in
n and rd, an acyclic job shop instance such that

585585

• The number of jobs and the number of machines are
both r11dn;
• The number of operations per job is at most ∆r4d;
• Each job has length rd and each machine has load rd.

Hence, lb = rd;
• Completeness case: IfG can be colored using L colors

then C∗max ≤ lb · L;
• Soundness case: Given a schedule with makespan lb ·
L, we can, in time polynomial in n and rd, find an
independent set of G of size (1/4− 5∆L

r)n/L.

When the parameters r and d are functions of n, i.e., the
reduction is probabilistic, the above properties hold with
probability 1 with the exception that the soundness analysis
might fail with negligible probability. Since the soundness
case is constructive we can, given a schedule, detect such a
failure in polynomial time.

In Section 2.1, we present a deterministic reduction with
somewhat stronger properties for the general job shop prob-
lem. As the reduction is relatively simple, it serves as a good
starting point before reading the similar but more complex
reduction Γ for the acyclic job shop problem.

Before continuing, let us see how Γ is sufficient for prov-
ing Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.4. By Theorem 1.1, for sufficiently
large K and ∆ = 2K

O(logK)
, it is NP-hard to decide if an

n-vertex graph G with bounded degree ∆ has

χ(G) ≤ K or α(G) ≤ n

K
1
25 (logK)

.

As the vertices of a graph with bounded degree ∆ can, in
polynomial time, be partitioned into ∆+1 independent sets,
we complete the proof by using Γ with parameters
d = ∆ + 1 and r = 40∆K

1
25 (logK). We note that the

construction is deterministic as both d and r are constants.
�

Proof of Theorem 1.5. The proof is similar to the proof of
Theorem 1.4 with the exception that the graphs have no
longer bounded degree. To this end the following lemma
will be useful, whose proof can be found in Appendix A.

Lemma 2.1 For any constant δ ≥ 1, we can, given an n-
vertex graph G = (V,E), construct in randomized polyno-
mial time, a subgraph G′ = (V,E′) of G with E′ ⊆ E such
that

1. The vertices are partitioned into (log n)δ sets, each set
forms an independent set in G′.

2. We have that χ(G′) ≤ χ(G).
3. With overwhelming probability: Given an independent

set of G′, with n
(logn)δ−1 vertices, we can, in polyno-

mial time, find an independent set of G with n
(logn)δ

vertices.

Assuming NP 6⊆ DTIME(2O(logn)O(1)
), Theorem 1.2

with K = log n says that it is hard to decide if an n-vertex
graph G has

χ(G) ≤ log n or α(G) ≤ n

(log n)Ω(log logn)
.

Given an n-vertex graph G, we construct graph G′ from G
by applying Lemma 2.1. We then obtain a job shop instance
S from G′ by using Γ with parameters d = (log n)δ and
r = n3, where δ = 3/ε. The size of S isO(r11dn ·∆r4d) =
O(2O(logn)O(1/ε)

) and lb = n3(logn)δ .
The analysis is straightforward: If χ(G) ≤ log n then

χ(G′) ≤ log n and, by the completeness case of Γ, there is
a schedule of S with makespan log n · lb. On the other hand,
assuming that the probabilistic constructions of G′ and S
succeeded, we have that if α(G) ≤ n

(logn)Ω(log logn) then

C∗max > lb · 1/8(log n)δ−1. Since otherwise if C∗max ≤
lb · 1/8(log n)δ−1 then G′ has an independent set of size
n/(log n)δ−1 (soundness case of Γ) and thus G has an in-
dependent set of size n/(log n)δ (Lemma 2.1).

The probabilistic constructions ofG′ and S succeed with
overwhelming probability. Furthermore, as the properties
of G′ and S that might fail are constructive, we can, given
a schedule, detect such a failure in polynomial time and
repeat the reduction. It follows that a (1/8 · (log n)δ−2)-
approximation algorithm for the acyclic job shop problem
would imply that NP ⊆ ZTIME(2O(logn)O(1/ε)

). Finally
we note that δ was chosen such that

(log lb)1−ε ≤ 3·(log n)(1−ε)(δ+1) = 3·(log n)3/ε+1−3−ε =

3 · (log n)δ−2−ε < 1/8 · (log n)δ−2.

�

2.1 General Job Shops

In this section we give and analyze a somewhat stronger
reduction than Γ for the general job shop problem. In par-
ticular, the reduction presented here is always deterministic,
the number of operations per job is at most ∆rd, the number
of jobs and the number of machines are n, and the sound-
ness case says that, given a schedule with makespan lb · L,
we can, in time polynomial in n and rd, find an independent
set of G of size (1− ∆

r)n/L. As the reduction is relatively
simple, it serves as a good starting point before reading the
more complex reduction to the acyclic job shop problem.

Construction. Given an n-vertex graph G = (V,E)
whose vertices are partitioned into d independent sets, we
create a job shop instance S(r, d), where r and d are the pa-
rameters of the reduction. There is a machine Mv and a job
Jv for each vertex v ∈ V . We continue by describing the

586586

operations of the jobs. Let I1, I2, . . . Id denote the indepen-
dent sets that form a partition of V . To simplify notation,
we shall use I<i to denote

⋃
k:1≤k<i Ik. A job Jv that cor-

responds to a vertex v ∈ Ii, for some i : 1 ≤ i ≤ d, has
a chain of ri−1 long-operations O1, O2, . . . , Ori−1 , each of
them requires rd−i+1 time units, that must be processed on
the machine Mv . Between two consecutive long-operations
Op, Op+1 of Jv , for p : 1 ≤ p < ri−1, we have a set of
short-operations placed on the machines {Mu : {u, v} ∈
E, u ∈ I<i} in some order. A short-operation requires
time 0.

Remark. The construction has n machines and n jobs.
Each job has length rd and each machine has load rd.
Hence, lb = rd. Moreover, the number of operations per
job is at most (∆ + 1)rd−1 ≤ ∆rd. �

Completeness. We prove that if the graph G can be col-
ored with L colors then there is a relatively “short” solution
to the job shop instance.

Lemma 2.2 If χ(G) = L then then there is a schedule of
S(r, d) with makespan lb · L.

Proof. Let V1, V2, . . . , VL be a partition of V into L in-
dependent sets. Consider one of these sets, say Vi. As
the vertices of Vi form an independent set, no short-
operations of the jobs {Jv}v∈Vi , are scheduled on the ma-
chines {Mu}u∈Vi . Since short-operations require time 0
we can schedule the jobs {Jv}v∈Vi within lb time units.
We can thus schedule the jobs in L-”blocks” in the or-
der {Jv}v∈V1 , {Jv}v∈V2 , . . . , {Jv}v∈VL . The total length
of this schedule is lb · L. �

Soundness. We prove that, given a “short” schedule, we
can, in polynomial time, find a “big” independent set of G.

Lemma 2.3 Given a schedule of S(r, d) with makespan
lb ·L, we can, in time polynomial in n and rd, find an inde-
pendent set of G of size at least (1− ∆

r)n/L.

Proof. First we show that two jobs corresponding to adja-
cent vertices cannot be scheduled in parallel.

Claim 2.4 Let u ∈ Ii and v ∈ Ij be two adjacent vertices
in G with i < j. Then at most a fraction 1

r of the long-
operations of Jv can overlap the long-operations of Ju.

Proof of Claim. There are ri−1 and rj−1 long-operations
of Ju and Jv , respectively. As the vertices u and v are adja-
cent, job Jv has a small-operation on Machine Mu between
any two long-operations. Hence at most one long-operation
of Jv can be scheduled in parallel with a long-operation of
Ju and the total number of such operations in any schedule
is at most ri−1 ≤ rj−1

r . �

Now consider a schedule with makespan lb ·L. For each
i : 1 < i ≤ d and for each v ∈ Ii, we disregard those
long-operations of job Jv that overlap long-operations of
the jobs {Ju : {u, v} ∈ E and u ∈ I<i}. After disre-
garding operations, no two long-operations corresponding
to adjacent vertices will overlap in time. Furthermore, by
applying Claim 2.4 and using that the maximum degree
of G is ∆, we know that at most a fraction ∆

r of a job’s
long-operations have been disregarded. The statement now
follows by observing that the remaining long-operations of
each job require time at least (1 − ∆

r) · lb and by a sim-
ple averaging argument we have that at least (1 − ∆

r)n/L
long-operations must overlap at some point in the schedule.
Moreover, we can find such a point in the schedule by, for
example, considering the start and end points of all remain-
ing long-operations. �

2.2 Acyclic Job Shops

Here, we present the reduction Γ for the acyclic job shop
problem. The idea is similar to the reduction presented in
Section 2.1 for the general job shop problem. The main
difference is to ensure, without using cyclic jobs, that jobs
corresponding to adjacent vertices cannot be scheduled in
parallel. To this end we need some preliminary definitions
and a lemma that are slight variations of the techniques de-
veloped in [4] for proving the existence of acyclic job shop
instances with C∗max = Ω(lb · log lb/ log log lb). We shall
use [m] for the set {0, 1, . . . ,m− 1}.

Definition 2.5 (Bucket and List)
1. A bucket B(m, b) is a subset of [m] with |B(m, b)| =

(1− 1/b)m.
2. A list of type L(m, `, s) is a family of ` mutually dis-

joint subsets of [m], where each subset has
cardinality s.

3. A list avoids a bucket B(m, b) if each of its ` subsets
has a non-empty intersection with [m] \B(m, b).

Definition 2.6 (Conflict Family) A set of m lists of type
L(m, `, s) is called a conflict family C(m, `, s) if for any
bucket B(m, `) at least (1− 1/`2)m lists avoid it.

The proof of the following lemma is similar to the proof
of Lemma 3.6 in [4] and can be found in Appendix B.

Lemma 2.7 For ` sufficiently large, for m = `11 and for
s = `3, we can in O(m`s) time with overwhelming proba-
bility construct a conflict family C(m, `, s). Moreover, this
can be done deterministically when ` is a constant.

Construction. Given an n-vertex graph G = (V,E)
whose vertices are partitioned into d independent sets, we
create an acyclic job shop instance S(r, d), where r and

587587

d are the parameters of the reduction. Let I1, I2, . . . Id
denote the independent sets that form a partition of V .
To simplify notation, we shall again use I<i to denote⋃
k:1≤k<i Ik. Construct a conflict family C(m, `, s), where

` = rd, s = `3, and m = `11. By Lemma 2.7, the con-
struction always succeeds if ` is a constant, and otherwise,
if ` is non-constant, it succeeds with overwhelming prob-
ability. The m different lists in the conflict family will be
used when we describe the jobs and will be referred to as
`1, `2, . . . , `m. The instance S(r, d) has a set of m ma-
chines Mv = {M0

v ,M
1
v , . . . ,M

m−1
v } and a set of m jobs

Jv = {J1
v , J

2
v , . . . , J

m
v } for each vertex v ∈ V . We con-

tinue by describing the operations of the jobs. A set of jobs
Jv = {J1

v , J
2
v , . . . , J

m
v } that correspond to a vertex v ∈ Ii,

for some i : 1 ≤ i ≤ d, has the following operations. The
job Jjv , for j : 1 ≤ j ≤ m, has a chain of ri−1 long-
operations O1, O2, . . . , Ori−1 that must be processed on
the respectively machinesM j

v ,M
j+1
v , . . . ,M j+ri−1

v , where
the superscript is mod m. A long-operation of Jjv requires
time rd−i+1. Between two consecutive long-operations
Op, Op+1 of Jjv , for p : 1 ≤ p < ri−1, we have a set
of short-operations that require 0 time units. These opera-
tions are defined as follows. Let s1, s2, . . . , s` denote the
` subsets of size s in the list `j . For each u ∈ I<i with
{u, v} ∈ E we have s short-operations placed on the ma-
chines {Mk

u}k∈sp in some order.

Remarks.
• The instance is acyclic as its operations are scheduled

on different machines. This follows by first observing
that a job has at most rd−1 long-operations and m >
rd−1. And secondly, by the definition of a list, two
short-operations of a job is not scheduled on the same
machine.

• For each v ∈ V , the jobs in Jv are the only jobs that
have long-operations on the machines in Mv . More-
over, the long-operations of the jobs in Jv are placed
in such a way so that all jobs in Jv can be scheduled in
parallel.

• The number of jobs and the number of machines are
both m · n = r11dn. Each job has length rd and
each machine has load rd. Hence, lb = rd. More-
over, the number of operations per job is at most
s∆rd−1 + rd−1 ≤ ∆r4d.

�

Completeness. By similar arguments as in the proof of
Lemma 2.2, if graph G can be colored with L colors then
there is a relatively short solution to the job shop instance.

Lemma 2.8 If χ(G) = L then there is a schedule of S(r, d)
with makespan lb · L.

Soundness. We carry out the analysis in this section
by assuming that the construction of the conflict family
C(m, `, s) succeeded. We prove that, given a short sched-
ule, we can, in polynomial time, find a big independent set
of G.

Lemma 2.9 Given a schedule of S(r, d) with makespan
lb ·L, we can, in time polynomial in n and rd, find an inde-
pendent set of G of size at least (1/4− 5∆L

r)n/L.

Proof. For the statement to be interesting we can assume
that r > 20∆L. The main idea of the proof is as follows.
Each vertex v ∈ V will be associated to lb/4 time steps of
the given schedule in which the jobs in Jv have many long-
operations. We then use the properties of the conflict family
to prove that the time steps associated to adjacent vertices
will be almost disjoint and the analysis then follows in the
same way as for general job shops.

Throughout the proof we consider any fixed schedule
with makespan lb · L. We start by defining the time steps
associated to each vertex. A vertex v ∈ V , with v ∈ Ii for
some i : 1 ≤ i ≤ d, is associated to a set Tv that consists
of ri−1/2 disjoint time intervals of length rd−i+1/2 so that
each time interval in Tv is completely covered by at least
m/(4L) long-operations of the jobs in Jv . The set Tv can
be selected as follows. Partition the schedule into 2Lri−1

blocks of consecutive time steps, where each block is of
length rd−i+1/2. As long-operations of jobs in Jv require
rd−i+1 time units, each long-operation completely covers
at least one block. Since there are m · ri−1 long-operations
of the jobs in Jv and each block can be completely covered
by at most m long-operations, at least ri−1/2 of the blocks
are completely covered by at leastm/4L long-operations of
the jobs in Jv . Let Tv contain ri−1/2 of those blocks.

We continue by showing that the time steps associated
to two adjacent vertices are almost disjoint. We call a job
j ∈ Jv bad, with v ∈ Ii for some i : 1 ≤ i ≤ d, if there
exists an adjacent vertex u, with u ∈ I<i, so that at least
two long-operations of j overlap some interval t ∈ Tu.

Claim 2.10 For each vertex v ∈ V at most a fraction 1/`
of the jobs in Jv are bad.

Proof of Claim. Consider a vertex v ∈ V , with v ∈ Ii for
some i : 1 ≤ i ≤ d. For a job Jjv ∈ Jv to be bad, there must
exist a vertex u ∈ I<i, adjacent to v, so that at least two
of Jjv ’s long-operations overlap some time interval t ∈ Tu.
This means that list `j of the conflict family C(m, `, s) fails
to avoid the bucket B, defined by the superscripts of the
machines in Mu that have idle-time during the time interval
t. By the definition of Tu, t is completely covered by at
least m/(4L) long-operations of jobs in Ju. It follows that
the bucket B has size at most m−m/(4L) and, as 4L ≤ `,
at most m/`2 lists fail to avoid it (see Lemma 2.7). In other

588588

words, at most m/`2 jobs in Jv have two long-operations
that overlap with the time interval t.

Finally, as vertex v has at most ∆ adjacent vertices and
each vertex is associated with at most rd−1/2 time intervals,
we have that at most ∆rd−1m/(2`2) < ∆m/(r · `) < m/`
of the jobs in Jv are bad. �

Remove all the bad jobs. Since we for each v ∈ V re-
move at most m/` jobs in Jv , the intervals in Tv are still
completely covered by at least m(1

4L −
1
`) > m(1

4L −
1

(20∆L)d
) ≥ m

5L long-operations. The remaining arguments
are similar to the soundness analysis of the general job shop
problem. The main difference is that, for each vertex, we
now consider a set of time intervals, instead of only con-
sidering the long-operations of a single job as done in Sec-
tion 2.1. A key ingredient for the remaining part of the proof
is the following observation. After removing the bad jobs
no job in Jv with v ∈ Ii, for some i : 1 ≤ i ≤ d, will have
two long-operations that overlap some time interval t ∈ Tu,
where u ∈ I<i and {u, v} ∈ E. Furthermore, as each in-
terval of Tv are completely covered by at least m/(5L) op-
erations, at most 5L time intervals in Tv can overlap a time
interval in Tu (otherwise some of the remaining jobs would
be bad). More specifically, we have

Claim 2.11 Let u ∈ Ii and v ∈ Ij be two adjacent vertices
in G with i < j. Then at most a fraction 5L

r of the intervals
in Tv are overlapping with the intervals in Tu.

Proof of Claim. The sets Tu and Tv contain ri−1/2 and
rj−1/2 intervals, respectively. Since we removed the bad
jobs, at most one long-operation of some job in Jv can be
scheduled in parallel with an interval in Tu. As each interval
of Tv are completely covered by at leastm/(5L) operations,
at most 5L time intervals in Tv can overlap a time interval
in Tu (otherwise some of the remaining jobs would be bad).
We conclude that the total number of intervals in Tv that
overlaps with intervals in Tu is at most 5L · ri−1/2. The
statement now follows by recalling that Tv contains rj−1/2
intervals and j > i. �

For each i : 1 < i ≤ d and for each v ∈ Ii, we dis-
regard those intervals of Tv that overlap intervals in the set⋃
{u,v}∈E,u∈I<i Tu. After disregarding those intervals, no

two intervals corresponding to adjacent vertices will over-
lap in time. Furthermore, by applying Claim 2.11 and using
that the maximum degree of G is ∆, we know that at most
a fraction ∆5L

r of a job’s time intervals have been disre-
garded. The statement now follows by observing that the
remaining time intervals of each job require time at least
(1−∆5L

r)·lb/4 and by a simple averaging argument we have
that at least (1/4− ∆5L

4r)n/L time intervals must overlap at
some point in the schedule. Moreover, we can find such a
point in the schedule by, for example, considering the start
and end points of all remaining time intervals. �

3 Fixed number of Machines

In this section we show that J2||Cmax has no PTAS
by presenting gap preserving reductions from the indepen-
dent set problem in cubic graphs. Given a cubic graph
G = (V,E), with n = |V | and thus |E| = 3n/2, it is
well known (see Theorem 1.3) that it is NP-hard to distin-
guish whether G has an independent set (IS) of size α ·n or
no independent set of size β · n, for some α > β. For any
given G, we construct an instance of J2||Cmax, so that, for
some f(n) and a constant ε > 0, we have

IS ≥ α · n ⇒ Cmax ≤ f(n) (1)
IS ≤ β · n ⇒ Cmax ≥ (1 + ε)f(n) (2)

The following lemma will be useful in the construction.

Lemma 3.1 For any small fixed ε > 0, we can in time poly-
nomial in n, construct a family C = {C1, C2, . . . , Cn2}
with the following properties:

1. Each set Ci ∈ C is a subset of
{1, 2, . . . , (1/ε)1/ε log n} and has size log n.

2. Two sets Ci ∈ C and Cj ∈ C, with i 6= j, satisfy
|Ci ∩ Cj | ≤ ε log n.

Throughout this section we also use the following nota-
tion to define jobs. An operation is defined by a pair [Mi, p],
where p is the processing time required on machineMi. Let
s1, . . . , sy be sequences of operations, and let (s1, . . . , sy)
stand for the sequence resulting by their concatenation in
the given order. We use (s1, . . . , sy)x to denote the se-
quence obtained by repeating (s1, . . . , sy) for x-times.

Construction. Before defining the jobs we will define
“blocks” of operations. The jobs will later be defined as
a concatenation of these blocks.

Let d = O(log n), for each i : 1 ≤ i ≤ d we define type
Ti and type T̄i as

Ti :=
(
[M1, n

4(d−i+1)], [M2, 0]
)n4(i−1)

T̄i :=
(
[M2, n

4(d−i+1)], [M1, 0]
)n4(i−1)

.

We will call the operations of Ti and T̄i, that require
n4(d−i+1) time units, for long-operations and the opera-
tions, that require 0 time units, for short-operations. Note
that a type requires time n4(i−1)n4(d−i+1) = n4d and two
types Ti and T̄j are compatible, i.e., they can be sched-
uled in parallel, if and only if i = j. For i = 1, . . . , |E|,
a configuration Ci = (Tπi,1 , . . . , Tπi,logn) is an ordered
sequence of log n types, where πi,j ∈ {1, . . . , d} de-
notes the “frequency” of the j-th type of configuration Ci.
Lemma 3.1 shows that we can define a set of configura-
tions C = {Ci : i = 1, . . . , |E|} such that any two con-
figurations Ci ∈ C and Cj ∈ C with i 6= j have at most

589589

ε log n types in common, for ε > 0 arbitrarily small. The
set C̄ = {C̄i : i = 1, . . . , |E|} is defined in a similar way
by using the types T̄i, i.e., for i = 1, . . . , |E| we have
C̄i = (T̄πi,1 , . . . , T̄πi,logn). Note that a configuration re-
quires n4d log n time units. We are now ready to define the
different blocks. For i = 1, . . . , |E|, block Bi is obtained
by concatenating Ci for n2-times, i.e. Bi := (Ci)n

2
; simi-

larly B̄i := (C̄i)n
2
. Let D = n4d+2 log n be the length of a

block.
The blocks are now used as building blocks for defin-

ing the jobs. We have a big job Jb that is composed
of an edge-part BE = (B1, B2, . . . , B|E|), followed by
a tail-part OIS = [M2, D · αn], a slack-part BS =
([M1, 1])D·3(1−α)n, and finally a remaining-part OV C =
[M2, D · (1− α)n].

We have a vertex job Jv for each vertex v ∈ V . Let
ei, ej , ek be the 3 edges incident to v with i < j < k. Job
Jv is composed of the sequence (B̄i, B̄j , B̄k) (edge part)
followed by a tail operation Ov = [M1, D]. Note that the
length of job Jb is D(|E|+ n+ 3(1− α)n) and the length
of a vertex job is 4D.

The following fundamental lemma motivates our con-
struction. It shows that for any pair {u, v} ∈ E of adjacent
vertices, either Ju or Jv cannot be completed before the end
of OIS without delaying job Jb of γ · D time units. It fol-
lows that, without delaying job Jb, only jobs corresponding
to vertices that form an independent set can be completed
before the end of OIS .

Lemma 3.2 For any i ∈ {1, . . . , |E|}, if there are two
copies of block B̄i to be scheduled, then at least γ ·D time
units of these two blocks cannot be scheduled in parallel
with the edge-part of job Jb, for some γ < 1 that can be
made arbitrarily close to 1.

Proof. LetA1 andA2 be the two copies of block B̄i. Recall
that B̄i is composed of n2 repetitions of the configuration
C̄i. Hence, A1 and A2 contain 2n2 copies of configuration
C̄i. We say that a configuration C̄i is contained in some
block Bk of job Jb if the first operation of C̄i starts not
before the first operation of Bk starts and the last operation
of C̄i ends not later than the last operation of Bk ends. For
k = 1, . . . , |E|, let λk denote the number of configurations
ofA1 andA2 that are contained in blockBk of job Jb. Note
that, for k = 1, . . . , |E|, at most one configuration of Ai
might start before and end after the first operation of Bk,
where i ∈ {1, 2}. Similarly, at most one configuration of
Ai might start before and end after the last operation of Bk,
where i ∈ {1, 2}. It follows that at most four configurations
of A1 and A2, that are not contained in some block Bk, can
overlap that block’s operations. Hence, by considering the
configurations not contained in some block and by recalling
that a configuration requires n4d log n time units, we have
that at least max[0, (2n2 −

∑
j λj − 4|E|) · n4d log n] time

units of A1 and A2 are not scheduled in parallel with the
edge-part of job Jb. Furthermore, as at most D time units
ofA1 andA2 can be scheduled in parallel with blockBi we
have that the configurations completely contained in block
Bi contribute with at least max[0, λi · n4d log n −D] time
units of A1 and A2, that are not scheduled in parallel with
the edge-part of job Jb. For the other configurations, i.e.,
the ones that are completely contained in some block Bj
with j 6= i, we have

Claim 3.3 The operations of a configuration C̄i and a
block Bj , with i 6= j, can overlap at most εn4d log n +
o(n4d log n) time units, for any arbitrarily small ε > 0.

Proof of Claim. The block Bj is composed of n2 repeti-
tions of Cj . Consider types T̄k ∈ C̄i and T` ∈ Cj with
k 6= l. If k > ` then, as T̄k has a short-operation on machine
M1 between any two consequent long-operations on ma-
chineM2, at most one long-operation of T̄k overlaps a long-
operation of T`. Since T` has n4(`−1) long-operations and
each long-operation of T̄k requires n4(d−k+1) time units, it
follows, by using k > l, that the operations of T` and T̄k
overlap at most n4(d−1) time units. The same result can
be obtained when k < ` by using symmetric arguments.
Furthermore, if Tk 6∈ Cj then the operations of T̄k and Bj
overlap at most n2 log n · n4(d−1) < n4d−1 time units. The
claim now follows since the two configurations C̄i and Cj
have at most ε log n compatible types. �

Adding up the two above observations with the above
claim give us that at least

max[0, (2n2 −
∑
j

λj − 4|E|) · n4d log n]+

max[0, λi ·n4d log n−D] + (1− ε− o(1))n4d log n
∑
j 6=i

λj

time units of these blocks cannot be scheduled in parallel
with the edge-part of job Jb. The statement now follows
from that the graph has relatively few edges, |E| = 3/2n,
and since ε can be made arbitrarily small we can pick
γ arbitrarily close to 1 and disregard the terms of order
o(n4d+2 log n) = o(D). �

Completeness. We will see that all vertex jobs can be
scheduled in parallel with the long job Jb. Thus the
makespan of the schedule will be equal to the length of Jb.

Let V ′ ⊆ V denote an independent set of G with
|V ′| = αn. Since V ′ forms an independent set no two
vertices are incident to the same edge. Recall that a block
B̄i can be scheduled in parallel with a block Bi, the last
operation of a vertex job requires time D on machine M1

and operation OIS of Jb requires time Dαn on machine

590590

M2. It follows that the vertex jobs corresponding to the ver-
tices in V ′ can all be scheduled in parallel with the blocks
B1, B2, . . . , B|E| and operation OIS of Jb. As job Jb has
D ·3(1−α)n slack-operations, a block B̄i can be scheduled
in parallel with D slack-operations, and operation OV C re-
quires time D(1 − α)n, the jobs corresponding to the ver-
tices of V \V ′, (1−α)n many, can be scheduled in parallel
with the slack-operations and operation OV C of Jb.

Soundness. As the makespan equals the length of job Jb
in the completeness case, we will analyze the soundness
case by showing that there is a fraction of the operations
belonging to the vertex jobs that are not scheduled in paral-
lel with Jb.

For any given schedule, let t1 be the time at which opera-
tionOIS is completed, and t2 be the time at which operation
OV C starts. Let T := n ·D denote the sum of the tail oper-
ation lengths. Let τ1,τ2 and τ3 be the fraction of T spent to
schedule tail operations during time interval [0, t1), [t1, t2)
and [t2,∞), respectively.

It is easy to observe that any positive value of τ2 cre-
ates a delay of job Jb of value τ2 · T , whereas τ3 a de-
lay of max{0, (τ3 − (1 − α))T}. Finally, note that there
are at least τ1 · n jobs that complete their edge-part be-
fore time t1. Since IS ≤ βn, it follows that there are at
least max{0, (τ1 − β)n} conflicting pairs of jobs (i.e., cor-
responding to adjacent pairs of vertices) that delay job Jb
by at least (τ1 − β)n · γ · D time units by Lemma 3.2. It
is not difficult to check that the delay of job Jb is at least
(α− β)γ · n ·D.

Acknowledgments.

We are grateful to Maxim Sviridenko who introduced
us to the problem and gave useful references. Also, many
thanks to Subhash Khot for a kind explanation of his results
and to Andreas Schulz for useful comments on a prelimi-
nary version of this paper.

This research is supported by the Swiss National Sci-
ence Foundation projects 200021-104017/1, “Power Aware
Computing”, 200020-109854, “Approximation Algorithms
for Machine scheduling Through Theory and Experiments
II”, and PBTI2-120966, “Scheduling with Precedence Con-
straints”.

The first author would like to dedicate this work to
Edoardo on the occasion of his birth.

References

[1] P. Alimonti and V. Kann. Some APX-completeness results
for cubic graphs. Theor. Comput. Sci., 237(1-2):123–134,
2000.

[2] N. Bansal, T. Kimbrel, and M. Sviridenko. Job shop
scheduling with unit processing times. Mathematics of Op-
erations Research, 31:381–389, 2006.

[3] A. Czumaj and C. Scheideler. A new algorithm approach to
the general lovász local lemma with applications to schedul-
ing and satisfiability problems (extended abstract). In STOC,
pages 38–47, 2000.

[4] U. Feige and C. Scheideler. Improved bounds for acyclic job
shop scheduling. Combinatorica, 22(3):361–399, 2002.

[5] A. V. Fishkin, K. Jansen, and M. Mastrolilli. Grouping tech-
niques for scheduling problems: Simpler and faster. Algo-
rithmica, 51(2):183–199, 2008.

[6] L. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk.
Better approximation guarantees for job-shop scheduling.
SIAM Journal on Discrete Mathematics, 14(1):67–92, 2001.

[7] T. Gonzalez and S. Sahni. Flowshop and jobshop sched-
ules: complexity and approximation. Operations Research,
26:36–52, 1978.

[8] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan. Opti-
mization and approximation in deterministic sequencing and
scheduling: A survey. In Annals of Discrete Mathematics,
volume 5, pages 287–326. North–Holland, 1979.

[9] K. Jansen, R. Solis-Oba, and M. Sviridenko. Makespan min-
imization in job shops: A linear time approximation scheme.
SIAM J. Discrete Math., 16(2):288–300, 2003.

[10] S. Khot. Improved inaproximability results for maxclique,
chromatic number and approximate graph coloring. In
FOCS, pages 600–609, 2001.

[11] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys. Sequenc-
ing and scheduling: Algorithms and complexity. Handbook
in Operations Research and Management Science, 4:445–
522, 1993.

[12] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing
and job-shop scheduling in O(congestion + dilation) steps.
Combinatorica, 14(2):167–186, 1994.

[13] F. T. Leighton, B. M. Maggs, and A. W. Richa. Fast algo-
rithms for finding O(congestion + dilation) packet routing
schedules. Combinatorica, 19:375–401, 1999.

[14] M. Mastrolilli and O. Svensson. (acyclic) job shops are hard
to approximate. http://www.idsia.ch/˜monaldo, 2008.

[15] M. Queyranne and M. Sviridenko. Approximation algo-
rithms for shop scheduling problems with minsum objective.
Journal of Scheduling, 5(4):287–305, 2002.

[16] P. Schuurman and G. J. Woeginger. Polynomial time ap-
proximation algorithms for machine scheduling: ten open
problems. Journal of Scheduling, 2(5):203–213, 1999.

[17] D. Shmoys, C. Stein, and J. Wein. Improved approximation
algorithms for shop scheduling problems. SIAM Journal on
Computing, 23:617–632, 1994.

[18] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens,
J. Lenstra, S. Sevastianov, and D. Shmoys. Short shop
schedules. Operations Research, 45:288–294, 1997.

A Proof of Lemma 2.1

Given an n-vertex graph G = (V,E), we give a prob-
abilistic construction of G′. Each vertex v ∈ V is as-
signed, independently, uniformly at random to one of the

591591

sets I1, I2, . . . , I(logn)δ . Let E′ ⊆ E be those edges that
are incident to vertices placed in different sets, i.e., an edge
is deleted if and only if it is adjacent to two vertices u ∈ Ii
and v ∈ Ii for some i : 1 ≤ i ≤ (log n)δ .

The graph G′ obviously satisfies the first two proper-
ties in the lemma. We continue by showing that G′ satis-
fies property 3 with overwhelming probability. In fact, we
show that the following stronger property holds with over-
whelming probability: any independent set I ′ of G′, with
|I ′| = n

(logn)δ−1 , induces a subgraph of G with at least
n

(logn)δ
maximal connected components.

Fix a set V ′ ⊆ V of n/(log n)δ−1 vertices and let H
be the subgraph of G induced by V ′. Assuming that H
can be partitioned into s maximal connected components,
with s ≤ n

(logn)δ
, we calculate the probability that V ′ forms

an independent set in G′. Let H1, H2, . . . ,Hs denote the
maximal connected components of H . We use |H`|, for
` : 1 ≤ ` ≤ s, to denote the number of vertices ofH`. If the
vertices ofH form an independent set inG′ then all vertices
of a connected component must be placed in the same set
Ii, for some i : 1 ≤ i ≤ (log n)δ . The probability that
this happen, for a connected component with k vertices, is

at most
(

1
logn

)δ(k−1)

. As the different maximal connected
components are independent, the probability that V ′ forms
an independent set in G′ is at most(

1
log n

)δ(|H1|−1)(1
log n

)δ(|H2|−1)

. . .

(
1

log n

)δ(|Hs|−1)

≤
(

1
log n

)δ·n/(logn)δ−1·(1−1/ logn)

.

The number of ways to fix the set V ′ is at most(
n

n/(log n)δ−1

)
≤ (e · log n)(δ−1)n/(logn)δ−1

.

Hence, the union bound implies that the probability that
graph G′ fails to satisfy property 3 is at most(

1
log n

)δ·n/(logn)δ−1·(1−1/ logn)

·(e · log n)(δ−1)n/(logn)δ−1

which tends to 0 as n tends to infinity.

B Proof of Lemma 2.7

We will give a probabilistic construction when ` is de-
pending on n, i.e., is not a constant. The other case when `
is a constant then also m and s are constants and since the
arguments below show that there is at least one such conflict
family C(m, `, s) exists (for large enough `), we can find it
by, for example, using brute force.

Consider the following three step randomized procedure
for constructing C(m, `, s).

1. For each of the m lists independently, each of the `
subsets are chosen independently, and each of the s
elements of a subset is chosen uniformly at random,
independently of all other choices. After this step the
subsets can contain duplicates, i.e., be multi-sets, and
the different subsets of a list may not be mutually dis-
joint.

2. If more than a fraction 1/(2`2) of the lists created in
step 1 contains multi-sets or two subsets with non-
empty intersection, abort.

3. Leave the (1− 1/(2`2))m valid lists untouched. Rear-
range the subsets of the remaining lists so that each of
them becomes valid.

First, let us show that the probability that the construc-
tion aborts is negligible. Consider any particular list, the
probability that it has two elements that take the same value
is at most

(
`s
2

)
/m, which is less than 1/`3 as m = `11 and

s = `3. Hence, the expected number of acyclic jobs is at
least (1 − 1/`3)m and the standard bounds on large devia-
tions show that the probability that step 2 aborts is negligi-
ble.

We conclude that with overwhelming probability, the
construction does not abort. It remains to verify that for
any bucket B(m, `) at least (1 − 1/`2)m lists avoid it. We
shall check a stronger condition after step 1 of the construc-
tion, namely, that for any bucket B(m, `), at least a fraction
of (1 − 1/(2`2)) of the lists avoid it. This implies that the
construction is valid after step 3, as only a fraction 1/(2`2)
of the jobs are rearranged.

Fix a particular bucket B(m, `), and consider a list L
composed of ` subsets of [m], each of these subsets con-
tains s elements chosen independently at random. If L
fails to avoid B(m, `), then at least one out of its ` sub-
sets is completely contained in B(m, `). The probabil-
ity that s randomly picked elements belongs to B(m, `) is
(1 − 1

`)s. Since there are ` different subsets we conclude
that the probability that a random list fails to avoid a partic-
ular bucket is at most `(1 − 1

`)s. Substituting back in the
value of s, this can be upper bounded by ` · e−`2 < e−α`

2
,

for some α < 1 that can be made arbitrarily close to 1 when
` is sufficiently large.

If there are m random lists as above, the probability that
a fraction 1/(2`2) of them fail to avoid the bucket configu-

ration is at most
(
e−α`

2
)m/(2`2)

·
(

m
m/(2`2)

)
≤ 2−βm, for

some β > 0. As there are less than mm/` = 2m logm/`

possible buckets, the probability that a fraction 1/(2`2) of
lists fail to avoid some bucket configuration is negligible.

It follows that a conflict family can be created in time
O(m`s) with overwhelming probability.

592592

