
Scheduling with Precedence Constraints of Low
Fractional Dimension
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Abstract. We consider the single machine scheduling problem to mini-
mize the average weighted completion time under precedence constrains.
Improving on the various 2-approximation algorithms is considered one
of the ten most prominent open problems in scheduling theory. Recently,
research has focused on special cases of the problem, mostly by restrict-
ing the set of precedence constraints to special classes such as convex
bipartite, two-dimensional, and interval orders.

In this paper we extend our previous results by presenting a framework
for obtaining (2 − 2/d)-approximation algorithms provided that the set
of precedence constraints has fractional dimension d. Our generalized
approach yields the best known approximation ratios for all previously
considered classes of precedence constraints, and it provides the first
results for bounded degree and interval dimension 2 orders.

As a negative result we show that the addressed problem remains
NP-hard even when restricted to the special case of interval orders.

1 Introduction

The problem we consider in this paper is a classical problem in scheduling theory,
known as 1|prec|

∑
j wjCj in standard scheduling notation (see e.g. Graham et

al. [12]). It is defined as the problem of scheduling a set N = {1, . . . , n} of n jobs
on a single machine, which can process at most one job at a time. Each job j has
a processing time pj and a weight wj , where pj and wj are nonnegative integers.
Jobs also have precedence constraints between them that are specified in the form
of a partially ordered set (poset) P = (N, P ), consisting of the set of jobs N and
a partial order i.e. a reflexive, antisymmetric, and transitive binary relation P on
N , where (i, j) ∈ P (i �= j) implies that job i must be completed before job j
can be started. The goal is to find a non-preemptive schedule which minimizes∑n

j=1 wjCj , where Cj is the time at which job j completes in the given schedule.
The described problem was shown to be strongly NP-hard already in 1978

by Lawler [17] and Lenstra & Rinnooy Kan [18]. While currently no inapprox-
imability result is known (other than that the problem does not admit a fully
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polynomial time approximation scheme), there are several 2-approximation al-
gorithms [26,29,13,6,5,20,2]. Closing this approximability gap is a longstanding
open problem in scheduling theory (see e.g. [30]).

Due to the difficulty to obtain better than 2-approximation algorithms, much
attention has recently been given to special cases which manifests itself in recent
approximation and exact algorithms [16,33,7,2,3].

On the negative side, Woeginger [33] proved that many quite severe restric-
tions on the weights and processing times do not influence approximability. For
example, the special case in which all jobs either have pj = 1 and wj = 0, or
pj = 0 and wj = 1, is as hard to approximate as the general case. This sug-
gests that in order to identify classes of instances which allow a better than
2-approximation one has to focus on the precedence constraints rather than the
weights and processing times.

Indeed, Lawler [17] gave an exact algorithm for series-parallel orders already
in 1978. For interval orders and convex bipartite precedence constraints, Woeg-
inger [33] gave approximation algorithms with approximation ratio arbitrarily
close to the golden ratio 1

2 (1 +
√

5) ≈ 1.61803.
Recently, Ambühl & Mastrolilli [2] settled an open problem first raised by

Chudak & Hochbaum [6] and whose answer was subsequently conjectured by
Correa & Schulz [7]. The results in [2,7] imply that 1|prec |

∑
wjCj is a special

case of the weighted vertex cover problem. More precisely, they proved that
every instance S of 1|prec |

∑
wjCj can be translated in polynomial time into

a weighted graph GP, such that finding the optimum of S can be reduced to
finding an optimum vertex cover in GP. This result even holds for approximate
solutions: Finding an α-approximate solution for S can be reduced to finding an
α-approximate vertex cover in GP.

Based on these results, three of the authors [3] discovered an interesting con-
nection between 1|prec |

∑
wjCj and the dimension theory of posets [32], by

observing that the graph GP is well known in dimension theory as the graph of
incomparable pairs of a poset P. Applying results from dimension theory allowed
to describe a framework for obtaining simple and efficient approximation algo-
rithms for 1|prec |

∑
wjCj with precedence constraints of low dimension, such

as convex bipartite and semi-orders. In both cases, the new 4/3-approximation
algorithms outperform the previously known results. The approach even yields
a polynomial algorithm for 2-dimensional precedence constraints, based on the
fact that the minimum weighted vertex cover on GP can be solved in polynomial
time since GP is bipartite for a 2-dimensional poset P [32,7]. This considerably
extends Lawler’s result [17] for series-parallel orders. Unfortunately, the frame-
work in [3] fails in the case of interval orders (in this case the dimension can be
of the order of log log n [32]).

The work in this paper originated from the study of 1|prec |
∑

wjCj under
interval orders (abbreviated 1|interval-order |

∑
j wjCj). Interval orders appear

in many natural contexts [10]. We provide both positive and negative results.
In the first part of the paper, we further generalize our previous frame-

work [3] such that it can be applied to precedence constraints of low fractional
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dimension [4] (Section 3). The extended framework yields (2−2/d)-approximation
algorithms whenever precedence constraints have fractional dimension bounded
by a constant d and satisfy a mild condition (see Section 3). Since the fractional
dimension of interval orders is bounded by 4 (see Section 4.1), this gives a 1.5-
approximation algorithm and improves the previous result in [33]. The extended
framework can also be applied to interval dimension two posets (Section 4.2),
bounded degree posets (Section 4.3), and posets obtained by the lexicographic
sums (Section 4.4).

In the second part of the paper, we show that 1|interval-order |
∑

j wjCjre-
mains NP-hard (Section 5). This result is rather unexpected as many prob-
lems can be solved in polynomial time when restricted to interval orders (see
e.g. [25]). The reduction heavily relies on the connection between 1|prec |

∑
wjCj

and weighted vertex cover described in [2].
In summary, our results indicate a strong relationship between the approxima-

bility of 1|prec|
∑

j wjCj and the fractional dimension d of the precedence con-
straints. In particular, it is polynomial for d = 2, but NP-hard already for d ≥ 3.
The latter stems from the facts that problem 1|prec|

∑
j wjCj is strongly NP-hard

even for posets with in-degree 2 [17], and the fractional dimension of these posets
is bounded by 3 [8]. This leaves the complexity for 2 < d < 3 as an open question.

2 Definitions and Preliminaries

2.1 Posets and Fractional Dimension

Let P = (N, P ) be a poset. For x, y ∈ N , we write x ≤ y when (x, y) ∈ P , and
x < y when (x, y) ∈ P and x �= y. When neither (x, y) ∈ P nor (y, x) ∈ P , we
say that x and y are incomparable, denoted by x||y. We call inc(P) = {(x, y) ∈
N × N : x||y in P} the set of incomparable pairs of P. A poset P is a linear
order (or a total order) if for any x, y ∈ N either (x, y) ∈ P or (y, x) ∈ P ,
i.e. inc(P) = ∅. A partial order P ′ on N is an extension of a partial order P
on the same set N , if P ⊆ P ′. An extension that is a linear order is called a
linear extension. Mirroring the definition of the fractional chromatic number of a
graph, Brightwell & Scheinerman [4] introduce the notion of fractional dimension
of a poset. Let F = {L1, L2, . . . , Lt} be a nonempty multiset of linear extensions
of P. The authors in [4] call F a k-fold realizer of P if for each incomparable
pair (x, y), there are at least k linear extensions in F which reverse the pair
(x, y), i.e., |{i = 1, . . . , t : y < x in Li}| ≥ k. We call a k-fold realizer of size t
a k:t-realizer. The fractional dimension of P is then the least rational number
fdim(P) ≥ 1 for which there exists a k:t-realizer of P so that k/t ≥ 1/fdim(P).
Using this terminology, the dimension of P, denoted by dim(P), is the least t for
which there exists a 1-fold realizer of P . It is immediate that fdim(P) ≤ dim(P)
for any poset P. Furthermore [4], fdim(P) = 1, or fdim(P) ≥ 2.

2.2 Scheduling, Vertex Cover, and Dimension Theory

In [7,2,3] a relationship between 1|prec|
∑

j wjCj , weighted vertex cover, and
the dimension theory of posets is shown. This relationship will turn out to be
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useful for both improving the approximation ratio for several classes of prece-
dence constraints and establishing the NP-hardness of 1|interval-order |

∑
j wjCj .

Let P = (N, P ) be any poset, that is not a linear order. Felsner and Trotter [9]
associate with P a hypergraph HP, called the hypergraph of incomparable pairs,
defined as follows. The vertices of HP are the incomparable pairs in P. The edge
set consists of those sets U of incomparable pairs such that no linear extension of
P reverses all incomparable pairs in U . Let GP denote the ordinary graph, called
the graph of incomparable pairs, determined by all edges of size 2 in HP. In [9,32]
it is shown that the dimension of P is equal to the chromatic number of HP,
i.e., dim(P) = χ(HP) ≥ χ(GP). In [4], it was noted that the same relationship
holds for the fractional versions, i.e., fdim(P) = χf (HP) ≥ χf (GP). We refer
the reader to [28] for an introduction to fractional graph coloring.

Given an instance S of 1|prec|
∑

j wjCj , we associate with S a weighted vertex
cover instance V CS on GP, where GP is the graph of incomparable pairs of the
poset P representing the precedence constraints and each vertex (i, j) ∈ inc(P)
has weight pi · wj . We denote the value of a solution s by val(s).

Theorem 1 ([2,3,7]). Let S be an instance of 1|prec|
∑

j wjCj where prece-
dence constraints are given by the poset P = (N, P ). Then the following trans-
formations can be performed in polynomial time.

1. Any feasible solution s′ of S can be turned into a feasible solution c′ of V CS,
such that

val(c′) ≤ val(s′) −
∑

(i,j)∈P

pi · wj .

2. Any feasible solution c′ to V CS can be turned into a feasible solution s′ of
S, such that

val(s′) ≤ val(c′) +
∑

(i,j)∈P

pi · wj .

In particular, if c∗ and s∗ are optimal solutions to V CS and S, respectively, we
have val(c∗) = val(s∗) −

∑
(i,j)∈P pi · wj .

We remark that the term
∑

(i,j)∈P pi · wj is a fixed cost and it is present in all
feasible schedules of S. This follows from the facts that a job’s processing time
is always included in its completion time, and any feasible schedule of S must
schedule job i before job j if i < j in P .

3 Scheduling and Fractional Dimension

In this section, we present an algorithmic framework that can be used to obtain
better than 2-approximation algorithms provided that the set of precedence con-
straints has low fractional dimension. Applications that follow this pattern are
given in Section 4.

We say that a poset P admits an efficiently samplable k:t-realizer if there exists
a randomized algorithm that, in polynomial time, returns any linear extension
from a k-fold realizer F = {L1, L2, . . . , Lt} with probability 1/t.
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Let S be an instance of 1|prec|
∑

j wjCj where precedence constraints are
given by a poset P = (N, P ). Assuming that P admits an efficiently samplable
k:t-realizer F = {L1, . . . , Lt}, we proceed as follows.

Let VP and EP be the vertex set and edge set, respectively, of the graph of
incomparable pairs GP. Consider the following integer program formulation of
the weighted vertex cover V CS :

min
∑

i∈VP

wixi

s.t. xi + xj ≥ 1 {i, j} ∈ EP

xi ∈ {0, 1} i ∈ VP

where wi denotes the weight of vertex vi ∈ Vp, as specified in the definition of
V CS (see Section 2.2). Let [VC-LP] denote the linear relaxation of the integer
program above.

Nemhauser & Trotter [23,24] proved that any basic feasible solution to [VC-
LP] is half-integral, that is xi ∈ {0, 1

2 , 1} for all i ∈ V . Let Vi be the set of nodes
whose corresponding variables took value i ∈ {0, 1

2 , 1} in the optimal solution of
[VC-LP].

Observe that for any linear extension L, the set of all incomparable pairs that
are reversed in L is an independent set in the graph of incomparable pairs GP.
Now, pick uniformly at random a linear extension L of F in polynomial time.
Note that V0 ∪ (V1/2 \L) defines an independent set of GP. Generalizing a result
by Hochbaum in [14], we prove that the complement of V0 ∪(V1/2 \L) is a vertex
cover whose expected value is within (2 − 2k

t ) times the weight of an optimum
cover. By Theorem 1, we can transform (in polynomial time) the solution of V CS

into a feasible solution of S of expected value at most (2 − 2k
t ) times the value

of an optimum schedule. We summarize the above arguments in the following
theorem.

Theorem 2. The problem 1|prec|
∑

j wjCj, whenever precedence constraints ad-
mit an efficiently samplable k:t-realizer, has a randomized (2−2k

t )-approximation
algorithm.

For a proof of this theorem, see Appendix A.1. Following a similar argumen-
tation, Hochbaum’s approach [14] for approximating the vertex cover prob-
lem can be extended to fractional coloring, yielding the same approximation
result.

A natural question is for which posets one can have an efficiently samplable
k:t-realizer. In the general case, Jain & Hedge [15] recently proved that it is
hard to approximate the dimension of a poset with n elements within a fac-
tor n0.5−ε, and the same hardness of approximation holds for the fractional
dimension. However, for several special cases, including interval orders (Sec-
tion 4.1) and bounded degree posets (Section 4.3), efficiently samplable
k:t-realizers exist.
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4 Precedence Constraints with Low Fractional Dimension

4.1 Interval Orders

A poset P = (N, P ) is an interval order if there is a function F , which assigns to
each x ∈ N a closed interval F (x) = [ax, bx] of the real line R, so that x < y in P
if and only if bx < ay in R. Interval orders can be recognized in O(n2) time [21,25].
The dimension of interval orders can be of the order of log log n [32], whereas the
fractional dimension is known to be less than 4 [4], and this bound is asymptoti-
cally tight [8]. In the following we show how to obtain a 1.5-approximation algo-
rithm for 1|interval-order |

∑
j wjCj . By Theorem 2, it is sufficient to prove that

interval orders admit an efficiently samplable k:t-realizer with t/k = 4.
Given a poset P = (N, P ), disjoint subsets A and B of the ground set N , and

a linear extension L of P , we say that B is over A in L if, for every incomparable
pair of elements (a, b) with a ∈ A and b ∈ B, one has b > a in L. The following
property of interval orders is fundamental.

Theorem 3 (Rabinovitch [27,10]). A poset P = (N, P ) is an interval order
if and only if for every pair (A, B) of disjoint subsets of N there is a linear
extension L of P with B over A.

By using this property we can easily obtain a k-fold realizer F = {L1, . . . , Lt}
with k = 2n−2 and t = 2n, where n = |N |. Indeed, consider every subset A of
N and let LA be a linear extension of P in which B = N \ A is over A. Now
let F be the multiset of all the LA’s. Note that |F| = 2n. Moreover, for any
incomparable pair (x, y) there are at least k = 2n−2 linear extensions in F for
which x ∈ B and y ∈ A. Finally, observe that we can efficiently pick uniformly
at random one linear extension from F : for every job j ∈ N put j either in A or
in B with the same probability 1/2.

By the previous observations and Theorem 2, we have a randomized polyno-
mial time 1.5-approximation for 1|interval-order |

∑
j wjCj . The described algo-

rithm can easily be derandomized by using the classical method of conditional
probabilities.

Theorem 4. Problem 1|interval-order|
∑

j wjCj has a deterministic polynomial
time 1.5-approximation algorithm.

4.2 Interval Dimension Two

The interval dimension of a poset P = (N, P ), denoted by dimI(P), is defined [32]
as the least t for which there exist t extensions Q1, Q2, . . . , Qt, so that:

– P = Q1 ∩ Q2 ∩ · · · ∩ Qt and
– (N, Qi) is an interval order for i = 1, 2, . . . , t.

Generally dimI(P) ≤ dim(P). Obviously, if P is an interval order, dimI(P) = 1.
The class of posets of interval dimension 2 forms a proper superclass of the

class of interval orders. Posets of interval dimension two can be recognized in
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O(n2) time due to Ma & Spinrad [19]. Given a poset P with dimI(P) = 2, their
algorithm also yields an interval realizer {Q1, Q2}. As described in Section 4.1,
we obtain k-fold realizers F1 = {L1, L2, . . . , Lt} and F2 = {L′

1, L
′
2, . . . , L

′
t} of Q1

and Q2, respectively, with k = 2n−2 and t = 2n. It is immediate that F = F1∪F2
is a k-fold realizer of P of size 2t = 2n+1. Furthermore, we can efficiently pick
uniformly at random one linear extension from F : pick uniformly at random a
linear extension from either F1 or F2 with the same probability 1/2. Again by
using conditional probabilities we have the following.

Theorem 5. Problem 1|prec|
∑

j wjCj, whenever precedence constraints have in-
terval dimension at most 2, has a polynomial time 1.75-approximation algorithm.

4.3 Posets of Bounded Degree

In the following we will see how to obtain, using Theorem 2, an approximation
algorithm for 1|prec |

∑
wjCj when the precedence constraints form a poset of

bounded degree. Before we proceed, we need to introduce some definitions.
Let P = (N, P ) be a poset. For any job j ∈ N , define the degree of j,

denoted deg(j), as the number of jobs comparable (but not equal) to j in P.
Let Δ(P) = max{deg(j) : j ∈ N}. Given a job j, let D(j) denote the set of all
jobs which are less than j, and U(j) those which are greater than j in P . Define
degD(j) = |D(j)| and ΔD(P) = max{degD(j) : j ∈ N}. The quantities degU (j)
and ΔU (P) are defined dually.

We observe that the NP-completeness proof for 1|prec |
∑

wjCj given by
Lawler [17] was actually provided for posets P with ΔD(P) = 2. By using
fractional dimension we show that these posets (with bounded min{ΔD, ΔU})
allow for better than 2-approximation.

Theorem 6. Problem 1|prec |
∑

wjCj has a polynomial time (2 − 2/f)-approx-
imation algorithm, where f = 1 + min{ΔD, ΔU , 1}.

Proof. Let P = (N, P ) be the poset representing the precedence constraints
with bounded min{ΔD, ΔU}. Assume, without loss of generality, that P is not
decomposable with respect to lexicographic sums (see Section 4.4). Otherwise,
a decomposition with respect to lexicographic sums can be done in O(n2) time
(see e.g. [22]), and each component can be considered separately. We call an
incomparable pair (x, y) ∈ inc(P) a critical pair if for all z, w ∈ N \ {x, y}
1. z < x in P implies z < y in P , and
2. y < w in P implies x < w in P .

Critical pairs play an important role in dimension theory: if for each critical pair
(x, y), there are at least k linear extensions in F which reverse the pair (x, y)
then F is a k-fold realizer of P and vice versa [4].

For any permutation M of N , consider the set C(M) of critical pairs (x, y)
that satisfy the following two conditions:

1. x > (D(y) ∪ {y}) in M if |D(y)| < ΔD

2. x > D(y) in M if |D(y)| = ΔD
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In [8], Felsner & Trotter present an algorithm that converts in polynomial time a
permutation M of N to a linear extension L of P so that L reverses all critical pairs
in the set C(M). Now set t = |N |! and consider the set M = {M1, M2, . . . , Mt}
of all permutations of the ground set N . Observe that for any critical pair (x, y)
there are at least n!/(ΔD + 1) different permutations Mi ∈ M, where the critical
pair is reversed, i.e., (y, x) ∈ C(Mi). Applying the algorithm in [8] we obtain a
k-fold realizer F = {L1, . . . , Lt} of P with t = n! and k = n!/(ΔD +1). Moreover,
we can efficiently pick uniformly at random one linear extension from F : generate
uniformly at random one permutation of jobs (e.g. by using Knuth’s shuffle algo-
rithm) and transform it into a linear extension with the described properties by
using the algorithm in [8]. The described algorithm can be derandomized by us-
ing the classical method of conditional probabilities. Finally observe that we can
repeat a similar analysis by using ΔU instead of ΔD. �

In fact, this result is stronger than the same statement with d = Δ(P). To
see this, consider the graph poset P(G) = (N, P ) defined as follows: given an
undirected graph G(V, E), let N = V ∪E and for every v ∈ V and e = {v1, v2} ∈
E, put (v, e) ∈ P if and only if v ∈ {v1, v2}. If Δ(G) is unbounded, this also
holds for Δ(P). However, since every edge is adjacent to only two vertices, ΔD

is bounded by 2, thus the value 1 + min{ΔU , ΔD} is also bounded. On the
other hand, for the complete graph on n nodes, Kn, Spencer [31] showed that
dim(P(Kn)) = Θ(log log n). Therefore, the poset P(Kn) is an example where
the dimension of the poset is unbounded, while min{ΔD, ΔU} (and thus also
the fractional dimension) is bounded. This means that the fractional dimension
approach can yield a substantially better result than the dimension approach
used in [3].

4.4 Lexicographic Sums

In this section we show how to use previous results to obtain approximation al-
gorithms for new ordered sets. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [32] for a more comprehensive dis-
cussion). Take a poset P = (N, P ) and replace each of its points x ∈ N with a
partially ordered set Qx, the module, such that the points in the module have the
same relation to points outside it. A more formal definition follows. For a poset
P = (N, P ) and a family of posets S = {(Yx, Qx) | x ∈ N} indexed by the ele-
ments in N , the lexicographic sum of S over (N, P ), denoted

∑
x∈(N,P )(Yx, Qx)

is the poset (Z, R) where Z = {(x, y) | x ∈ N, y ∈ Yx} and (x1, y1) ≤ (x2, y2) in
R if and only if one of the following two statements holds:

1. x1 < x2 in P .
2. x1 = x2 and y1 ≤ y2 in Qx1 .

We call P = P ∪ F the components of the lexicographic sum. A lexicographic
sum is trivial if |N | = 1 or if |Yx| = 1 for all x ∈ N . A poset is decomposable with
respect to lexicographic sums if it is isomorphic to a non-trivial lexicographic
sum.



138 C. Ambühl et al.

In case the precedence constraints of every component admit an efficiently sam-
plable realizer, we observe that this translates into a randomized approximation
algorithm:

Theorem 7. Problem 1|prec|
∑

j wjCj , whenever precedence constraints form
a lexicographic sum whose components i ∈ P admit efficiently samplable realiz-
ers, has a polynomial time randomized (2− 2t

k )−approximation algorithm, where
t/k = maxi∈P (ti/ki).

Finally, we point out that, if the approximation algorithm for each component
can be derandomized, this yields a derandomized approximation algorithm for
the lexicographic sum.

5 NP-Completeness for Interval Orders

In this section we show that 1|prec|
∑

j wjCj remains NP-complete even in the
special case of interval order precedence constraints. To prove this we exploit
the vertex cover nature of problem 1|prec |

∑
wjCj .

Theorem 8. Problem 1|interval-order|
∑

j wjCj is NP-complete.

Proof. A graph G is said to have bounded degree d if every vertex v in G is
adjacent to at most d other vertices. The problem of deciding if a graph G
with bounded degree 3 has a (unweighted) vertex cover of size at most m is
NP-complete [11]. We provide a reduction from the minimum vertex cover on
graphs with bounded degree 3 to 1|interval-order |

∑
j wjCj .

Given a connected graph G = (V, E) with bounded degree 3, we construct an
instance S of 1|interval-order |

∑
j wjCj so that S has a schedule with value less

than m + c + 1 if and only if G has a vertex cover of size at most m, where c is
a fixed value defined later (see Equation (1)). We present the construction of S
in two stages.

Stage 1 (Tree-layout of the graph). Starting from any vertex s ∈ V , consider
the tree T = (V, ET ), with ET ⊆ E, rooted at s on the set of nodes reachable
from s by using, for example, breadth-first search. Furthermore, we number the
vertices of T top-down and left-right. Figure 1 shows the breadth-first search
tree T for K4.

Define G′ = (V ′, E′) to be the graph obtained from T in the following way. For
each vertex vi in T we add two new vertices ui

2, u
i
1 and edges {ui

2, u
i
1}, {ui

1, vi}.
Furthermore, for each edge {vi, vj} ∈ E \ ET with i < j we add vertices eij

1 , eij
2

and edges {vi, e
ij
1 }, {eij

1 , eij
2 }, {eij

2 , uj
2}.

The following claim relates the optimum unweighted vertex covers of G and G′.

Claim 1. Let C∗ ⊆ V and C′∗ ⊆ V ′ be optimum vertex cover solutions to G and
G′, respectively, then |C∗| = |C′

∗|−|V |−|E\ET |. (For a proof, see Appendix A.2).
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Fig. 1. The breadth first search tree T = (V, ET ) for the graph G = K4, and the graph
G′. The solid edges belong to ET .

Stage 2 (Construction of scheduling instance). Given the vertex cover
graph G = (V, E) and its corresponding tree T = (V, ET ), we construct the
scheduling instance S with processing times, weights, and precedence constraints
to form an interval order I as defined below (see Figure 2 for an example), where
k is a value to be determined later.

Job Interval Repr. Proc. Time Weight
s0 [-1,0] 1 0
s1 [0, 1] 1/k 1
sj , j = 2, . . . , |V | [i, j], where 1/kj ki

{vi, vj} ∈ ET , i < j

mi, i = 1, . . . , |V | [i − 1
2 , |V | + i] 1/k(|V |+i) ki

ei, i = 1, . . . , |V | [|V | + i, |V | + i + 1] 0 k(|V |+i)

bij , where
{vi, vj} ∈ E \ ET , i < j [i, j − 1

2 ] 1/kj ki

Remark 1. Let i and j be two jobs in S with interval representations [a, b] and
[c, d] respectively, where a ≤ d. By the construction of the scheduling instance
S we have pi ≤ 1/k�b� and wj ≤ k�c�. It follows that pi · wj = 1 or pi · wj ≤
1/k if i and j are incomparable, since pi · wj ≥ k implies that b < c, i.e., i’s
interval representation is completely to the left of j’s interval representation.
Furthermore, if pi · wj = 1 then �b� = �c�.

Let D = {(s0, s1)}
∪ {(si, sj) : vi is the parent of vj in T }
∪ {(si, mi), (mi, ei) : i = 1, 2, . . . , |V |}
∪ {(si, bij), (bij , mj) : {vi, vj} ∈ E \ ET , i < j}

By the interval representation of the jobs and the remark above, we have the
following:
Claim 2. A pair of incomparable jobs (i,j) has pi ·wj = 1 if (i, j) ∈ D; otherwise
if (i, j) �∈ D then pi · wj ≤ 1/k.



140 C. Ambühl et al.
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II
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Fig. 2. The interval order I obtained from K4; G′
I is the subgraph induced on the

graph of incomparable pairs GI by the vertex subset D (the vertices with weight 1)

Claim 3. Let G′
I = (D, EI) be the subgraph induced on the graph of incompa-

rable pairs GI by the vertex subset D. Then G′ and G′
I are isomorphic. (For a

proof, see Appendix A.3).
By Claim 2, each incomparable pair of jobs (i, j) �∈ D satisfies p(i)·w(j) ≤ 1/k.

Let n be the number of jobs in the scheduling instance S and select k to be n2+1.
Let C,CI , and C′

I be optimal vertex cover solutions to G, GI and G′
I (defined

as in Claim 3), respectively. Then, by the selection of k and Claim 2, we have
|C′

I | ≤ |CI | ≤ |C′
I | +

∑

(i,j)∈inc(I)\D

piwj < |C′
I | + 1. Furthermore, Claims 3 and 1

give us that |C|+ |V |+ |E \ET | ≤ |CI | < |C|+ |V |+ |E \ET |+1. This, together
with Theorem 1, implies that |C| ≤ m if and only if there is a schedule of S with
value less than m + c + 1, where

c = |V | + |E \ ET | +
∑

(i,j)∈I

pi · wj . (1)

�
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A Omitted Proofs

A.1 Proof of Theorem 2

Proof. Let S be an instance of 1|prec|
∑

j wjCj where precedence constraints
are given by a poset P = (N, P ) that admits an efficiently samplable k:t-realizer
F = {L1, L2, . . . , Lt}. Furthermore, we assume that fdim(P) ≥ 2. The case when
fdim(P) = 1, i.e., P is a linear order, is trivial.

Let VP and EP be the vertex set and edge set, respectively, of the graph of in-
comparable pairs GP. Consider the weighted vertex cover V CS on GP where each
vertex (incomparable pair) (i, j) ∈ VP has weight w(i,j) = pi · wj , as specified in
the definition of V CS (see Section 2.2). Solve the [VC-LP] formulation of V CS (see
Section 3) and let Vi be the set of vertices with value i (i = 0, 1

2 , 1) in the optimum
solution. Denote by GP[V1/2] the subgraph of GP induced by the vertex set V1/2.
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We consider the linear extensions of F as outcomes in a uniform sample space. For
an incomparable pair (x, y), the probability that y is over x in F is given by

ProbF [y > x] =
1
t
|{i = 1, . . . , t : y > x ∈ Li}| ≥ k

t
(2)

The last inequality holds because every incomparable pair is reversed in at least
k linear extensions of F .

Let us pick one linear extension L uniformly at random from F = {L1, . . . , Lt}.
Then, by linearity of expectation, the expected value of the independent set I1/2,
obtained by taking the incomparable pairs in V1/2 that are reversed in L, is

E[w(I1/2)] =
∑

(i,j)∈V1/2

ProbF [j > i] · w(i,j) ≥ k

t
· w(V1/2) (3)

A vertex cover solution C for the graph GP[V1/2] can be obtained by picking the
nodes that are not in I1/2, namely C = V1/2 \ I1/2. The expected value of this
solution is

E[w(C)] = w(V1/2) − E[w(I1/2)] ≤
(

1 − k

t

)

w(V1/2)

As observed in [14], V1 ∪ C gives a valid vertex cover for graph GP. Moreover,
the expected value of the cover is bounded as follows

E[w(V1 ∪ C)] ≤ w(V1) +
(

1 − k

t

)

w(V1/2) (4)

≤ 2
(

1 − k

t

) (

w(V1) +
1
2
w(V1/2)

)

(5)

≤
(

2 − 2k

t

)

OPT (6)

where the last inequality holds since w(V1) + 1
2w(V1/2) is the optimal value

of [VC-LP]. Note that t/k ≥ fdim(P) ≥ 2 was used for the second inequal-
ity. Theorem 1 implies that any α-approximation algorithm for V CS also gives
an α-approximation algorithm for S. Thus we obtain a randomized (2 − 2k

t )-
approximation algorithm for S. �

A.2 Proof of Claim 1

This proof is similar to the proof in [1] for proving APX-completeness of vertex
cover on cubic graphs.

Proof of Claim. It is easy to see that from every vertex cover C ⊆ V of G we
can construct a vertex cover C′ ⊆ V ′ of G′ of size exactly |C| + |V | + |E \ ET |.
In C′ we include ui

1 for all i ∈ {i : vi ∈ V \ C}; ui
2 for all i ∈ {i : vi ∈ C}; eij

1
for each (vi, vj) ∈ E \ ET with vi ∈ V \ C; eij

2 for each (vi, vj) ∈ E \ ET with
vi ∈ C; and every vertex in C.

Given a vertex cover C′ ⊆ V ′ of G′ we transform it into a vertex cover C ⊆ V
of G in the following manner. Suppose there exists vi, vj ∈ V with i < j such
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that {vi, vj} ∈ E and vi �∈ C′, vj �∈ C′. Since C′ is a feasible vertex cover of G′

we have that {vi, vj} ∈ E\ET and either {eij
1 , eij

2 , uj
1} ⊆ C′ or {eij

1 , uj
2, u

j
1} ⊆ C′.

Thus we can obtain a vertex cover C′′ ⊆ V ′ of G′ with |C′′| ≤ |C′| by letting
C′′ = (C′ \ {uj

1, e
ij
2 }) ∪ {vj , u

j
2}. Repeating this procedure will result in a vertex

cover C′′′ ⊆ V ′ of G′ with |C′′′| ≤ |C′| such that C = C′′′ ∩V is a feasible vertex
cover of G. Furthermore it is easy to see that |C| ≤ |C′′′| − |V | − |E \ ET |. �

A.3 Proof of Claim 3

Proof of Claim. We relate the two graphs G′
I and G′ by the bijection f : D → V ′,

defined as follows.

f((a, b)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vj , if (a, b) = (si, sj),
ui

1, if (a, b) = (si, mi),
ui

2, if (a, b) = (mi, ei),
eij
1 , if (a, b) = (si, bij),

eij
2 , if (a, b) = (bij , mj).

Suppose {(a, b), (c, d)} ∈ EI . Since I is an interval order (does not contain
any 2 + 2 structures as induced posets [21,32]) and by the definition of D we
have that b = c. Now consider the possible cases of {(a, b), (b, d)}.

(a = si, b = sj , d = sk, i < j < k) By construction of I, vj is the parent of vk,
i.e., (f((si, sj)), f((sj , sk)) = (vj , vk) ∈ ET ⊆ E′.

(a = si, b = sj , d = bjk, i < j < k) Then f((si, sj)) = vj and f((sj , bjk)) = eij
1

and by definition of G′ we have (vj , e
jk
1 ) ∈ E′.

The remaining cases (a = si, b = sj , d = mj , i < j), (a = si, b = bij , d =
mj , i < j), (a = si, b = mi, d = ei), and (a = bij , b = mj , d = ej , i < j)
are similar to the two above and it is straightforward to check the implication
{(a, b), (b, d)} ∈ EI ⇒ {f((a, b)), f((b, c))} ∈ E′.

On the other hand, suppose (a, b) ∈ E′ and again consider the different pos-
sible cases.

(a = vi, b = vj , i < j) Then vi is the parent of vj in T and f−1(vi) = (sk, si)
and f−1(vj) = (si, sj) for some k < i < j. Since sk’s interval representation
is completely to the left of sj ’s interval representation in I the incomparable
pairs (sk, si) and (si, sj) cannot be reversed in the same linear extension,
i.e., {(sk, si), (si, sj)} ∈ EI .

(a = vi, b = eij
1 , i < j) Then f−1(vi) = (sk, si) and f−1(eij

1 ) = (si, bij) for some
k < i < j. Since sk’s interval representation is completely to the left of
bij ’s interval representation in I the incomparable pairs (sk, si) and (si, bij)
cannot be reversed in the same linear extension, i.e., {(sk, si), (si, bij)} ∈ EI .

The remaining cases (a = eij
1 , b = eij

2 , i < j), (a = eij
2 , b = uj

2, i < j), (a = uj
1, b =

uj
2, i < j), and (a = vj , b = uj

1, i < j) are similar to the two above and omitted.
We have thus proved that {(a, b), (b, d)} ∈ EI ⇔ {f((a, b)), f((b, c))} ∈ E′,

i.e., the function f defines an isomorphism between G′
I and G′. �


	Introduction
	Definitions and Preliminaries
	Posets and Fractional Dimension
	Scheduling, Vertex Cover, and Dimension Theory

	Scheduling and Fractional Dimension
	Precedence Constraints with Low Fractional Dimension
	Interval Orders
	Interval Dimension Two
	Posets of Bounded Degree
	Lexicographic Sums

	NP-Completeness for Interval Orders
	Omitted Proofs
	Proof of Theorem 2
	Proof of Claim 1
	Proof of Claim 3


