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1 Primal-Dual Algorithms

Last time, we used the technique of dual-fitting to analysis the approximation ratio of algorithms. Now
we explore some other approaches that use both the primal and the dual linear programs.

1.1 Complementary Slackness: Full and Approximate

Recall our canonical linear programs, where x ∈ R
n, y ∈ R

m, A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

Primal (P) min cTx

Ax ≥ b

x ≥ 0

Dual (D) max bTy

AT y ≤ c

y ≥ 0

Also recall that Strong Duality ensures that if both (P) and (D) have finite optima, they are equal.
Assume this is the case. Then, for the optima x and y of the primal and dual programs respectively, we
have

cTx =
n∑

i=1

cixi ≥
n∑

i=1

(
m∑

j=1

Ajiyj)xi =
m∑

j=1

(
n∑

i=1

Ajixi)yj ≥
m∑

j=1

bjyj = bT y.

Since cTx = bT y, the first and second inequalities should hold with equality. This implies that

Either ci =
m∑

j=1

Ajiyj or xi = 0 (1)

Either bj =
n∑

i=1

Ajixi or yj = 0 (2)

In other words, for the respective optima of (P) and (D), either the ith variable in x is zero or the
corresponding constraint in (D) is tight. Similarly, either the jth variable in y is zero or the corresponding
constraint in (P) is tight. These conditions are together termed as the (full) complementary slackness
conditions.
These definitions can be extended to more general feasible solutions of the primal and dual. Suppose

x is primal feasible and y is dual feasible. Let α, β ≥ 1. If these feasible solutions satisfy the following
conditions:

Either xi = 0 or ci ≥
m∑

j=1

Ajiyj ≥
ci
α

(3)

Either yj = 0 or bj ≤
n∑

i=1

Ajixi ≤ β · bj, (4)
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then they are said to satisfy the approximate complementary slackness criteria. It is clear that in this
case the primal feasible solution gives a (αβ)-approximate solution to the linear program. Indeed,

n∑

i=1

cixi ≤ αβ

m∑

j=1

bjyj

and
∑m

j=1 bjyj is a lower bound to the primal optimum. In the following sections, we will look at two
problems where the properties of complementary slackness are used to design approximation algorithms.
The class of such algorithms are called Primal-Dual algorithms.

1.2 Set Cover via Primal-Dual

As a first illustration, we will consider the Set-Cover problem. We have already seen several algorithms
for the problem. While the procedure presented below will not give us an improved approximation
ratio, it will illustrate several aspects of the Primal-Dual technique. As always, we start of with the
relaxed version of the IP representing the Set-Cover instance, which is given by a set of subsets S =
{S1, S2, . . . , Sn} of the universe of elements U = {e1, e2, . . . , em}. The relaxed LP and its dual are as
follows. We will also assume that each element of U is a member of atmost f sets.

Primal (P) min
∑

Si∈S

xi

∑

Si:ej∈Si

xi ≥ 1 ∀ej ∈ U

xi ≥ 0

Dual (D) max
∑

ej∈U

yj

∑

ej∈Si

yj ≤ 1 ∀Si ∈ S

yj ≥ 0

Here the primal variable vector x is of length n (the number of sets) and the dual variable vector y is
of length m (the number of elements in U). In the Primal-Dual schema, we will start with a primal
infeasible vector x = 0 and a dual feasible vector y = 0. As long as there is some element ej ∈ U that
is still uncovered by the primal solution, we will look at the corresponding dual variable yj and raise its
value until some dual constraint(s) becomes tight all the time maintaining dual feasibility. Now the dual
constraints correspond to sets in S. We set the corresponding primal variables to 1 (and hence include
these sets in our set cover). This is continued until all the elements are covered.

Lemma 1 The above algorithm is an f -approximation to Set Cover.

Proof Let I ⊆ S be the collection of sets returned by the algorithm. Then, for each Si ∈ I, the
corresponding dual constraint is satisfied with equality. Therefore,

|I| =
∑

Si∈I

1 =
∑

Si∈I

∑

ej∈Si

yj =
∑

ej∈U

yj
∑

i∈I:ej∈Si

1

Now clearly, by definition |
∑

i∈I:ej∈Si
1| ≤ f . Therefore, if OPT denotes the size of the optimal set

cover,

|I| ≤ f
∑

ej∈U

yj ≤ f · OPT
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Notice that, the final x and y are feasible solutions for P and D respectively and the complementary
slackness conditions are satisfied with α = 1 and β = f .

1.3 The Metric Uncapacitated Facility Location Problem

In this problem, the input is a complete bipartite graph G = (V,E). The vertex set V is partitioned
into two sets: facilities (F ) and clients (C). Each facility incurs a cost fi to open. There is also a cost
cij when client j uses facility i. The goal is to find a set I ⊆ F of facilities such that the total cost of
opening I and connecting every client to some facility in I is minimized. In addition, the costs cij satisfy
a metric condition which takes the following form. For any two distinct facilities i, i′ and two distinct
clients j, j′

ci′j ≤ cij + cij′ + ci′j′ .

As always, we will start with the IP formulation of the problem and relax it to an LP. The relaxed LP
and its dual are shown below. In the primal LP, there is a vector y of length |F | associated with the
facilities, which represents which facilities are open. There is also a variable xij for each pair of facility
and client denoting whether client j is connected to facility i.

Primal (P) min
∑

i∈F

fi · yi +
∑

i∈F,j∈C

cij · xij

∑

i∈F

xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0 ∀i ∈ F, j ∈ C

yi, xij ∈ [0, 1] ∀i ∈ F, j ∈ C

The first set of constraints represents the fact that each client is connected to at least one facility. The
second set of constraints enforces the requirement that a client can only be connected to an open facility.
The dual LP is the following. There is a set of variables for each client αj and a variable for each
client-facility pair, βij .

Dual (D) max
∑

j∈C

αj

∑

j∈C

βij ≤ fi ∀i ∈ F

αj − βij ≤ cij ∀i ∈ F, j ∈ C

αj , βij ≥ 0 ∀i ∈ F, j ∈ C

The Primal-Dual algorithm has two phases.

Phase I

Initially, we again start with a dual feasible solution {αj = 0, βij = 0}. It is beneficial to imagine the
algorithm running in unit time steps starting from zero. Let t denote the current time. Raise all the αj ’s
uniformly (by the same amount t) until we reach a point such that αj = cij for some i, j. All such edges
are called tight edges. Now, if this happens we still have the option of raising βij ’s, also at the same rate
such that αj − βij remains equal to cij . We continue doing this until we hit a constraint

∑
j∈C βij = fi.

It is at this point we temporarily open the facility i. For all the edges (i, j) such that αj = βij + cij , we
connect client j to facility i. Facility i is called a connecting witness for all such clients j. Each edge
(i, j) for which βij > 0 is called a special edge. Note that special edges remain tight edges and for such
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edges, αj = βij + cij . Note that once a client j is connected, the value of the corresponding αj is no
longer increased.
Assume that after one round of the above procedure, the set of temporarily open facilities is L =

{i1, i2, . . . , ik}. All the clients that get connected to facilities in L are marked as “connected”. We
continue the procedure with the remaining unconnected clients. Now that L is not a null set, it may
happen that for a client j1, the edge (i, j1) for some i ∈ L becomes tight. In this case, j1 is declared
connected and i is called the connecting witness for j1. Note that in that case, βij1 = 0. The set L does
not change. The other possibility is that a new facility ik+1 becomes open, in which case it is added to
L and all the clients corresponding to tight edges with ik+1 are marked connected. This procedure is
continued till all the clients are marked connected.

To get some intuition, we can think of αj to be the amount client j is paying towards the total cost of
the solution. The βij ’s can be thought of as the amount client j is contributing towards opening facility
i. Thus, for the tight and special edges, αj is split between the cost cij of connecting to a facility i and
the contribution βij to its opening. Further, the fact that

∑
j∈C βij = fi for the temporarily open facili-

ties ensures that the cost fi of opening a facility has been fully paid for by all the clients that connect to it.

Phase II

After the end of Phase I, let Ft be the set of temporarily open facilities. Our goal is to permanently open
a subset of Ft. To this end, consider the subgraph of T of G where there is an edge between client j and
facility i iff βij > 0. Let T 2 be the graph such that contains edges (u, v) iff the distance between u and
v in T is at most 2. Finally, let H be the subgraph of T 2 induced by Ft. The final step of the algorithm
is to pick a maximal independent set in H called I and make those facilities permanently open.
It remains to specify which facility each client gets connected to. For a client j, let φ(j) denote the

facility in I to which it is assigned. Also, for client j define Fj as

Fj = {i ∈ Ft| edge (i, j) special, i.e. βij > 0}.

The following cases may arise for each client j.

1. I ∩ Fj 6= ∅. Since I is an independent set, it follows in this case that |I ∩ Fj | = 1. Set φ(j) = i,
where i ∈ I ∩ Fj . Call this client directly connected. Clearly, in this case edge (i, j) is special and
βij > 0.

2. I ∩ Fj = ∅. In this case, if the connecting witness for client j is i′ ∈ I , set φ(j) = i′. Call this
client directly connected, too. Notice that, in this case the edge (i′, j) is tight and βi′j = 0, since
i′ /∈ Fj .

3. Finally, there may be clients such that I ∩Fj = ∅ and the connecting witness for client j is i′ /∈ I,
then let i be any neighbor of i′ in H such that i ∈ I. Set φ(j) = i. Call the client j indirectly
connected.

1.3.1 Analysis of the algorithm

In the analysis, we will show how the dual solution αj accounts for the costs of opening and connecting
clients to facilities. Let

αj = αf
j (contribution for opening facility)+ αc

j(contribution for connection cost).

If client j is directly connected, then αj = βij + cij where i = φ(j). In this case, we set αf
j = βij and

αc
j = cij . If the client is indirectly connected, then set α

f
j = 0 and αc

j = αj . We have the following
lemma.

Lemma 2 For each i ∈ I,
∑

j:φ(j)=i α
f
j = fi.
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Proof Since i ∈ I is temporarily open at the end of Phase I, we have

∑

j:(i,j) is special

βij = fi

Notice that each client j, who has contributed to fi in the above sum, is directly connected and hence
αf
j = βij for such clients. The other clients connected directly through tight edges have α

f
j = βij = 0.

Finally, the indirectly connected clients have again αf
j = 0 by definition.

Intuitively speaking, this lemma shows that the cost of opening the facilities is completely accounted for
by the αf

j ’s. It remains to bound the cost incurred by the α
c
j ’s. We have the following lemma.

Lemma 3 For an indirectly connected client j and facility i = φ(j), cij ≤ 3αc
j.

Proof Let i′ be the connecting witness for city j. Since j is indirectly connected to i, (i, i′) must be
an edge in H . Since H was constructed by taking connecting vertices in F at a distance of at most 2 in
T , there must be a client j′ such that (i, j′) and (i′, j′) are both special edges (recall T consisted only of
special edges). Further, let t1 and t2 be the two time instances when i and i

′ were declared temporarily
open. Since edge (i′, j) is tight, αj ≥ ci′j . Since edges (i, j

′) and (i′, j′) are also special edges, αj′ ≥ cij′

i i′

j′ j

special tight

and αj′ ≥ ci′j′ . Clearly, both these edges must have become special at a time before either i or i
′ was

temporarily opened in Phase I. Further, αj′ would have stopped increasing after the opening of either
i or i′. Therefore, αj′ ≤ min(t1, t2). Finally, since i

′ is the connecting witness of j, αj ≥ t2. Thus we
have following inequalities:

αj ≥ ci′j

αj ≥ t2 ≥ min(t1, t2) ≥ αj′ ≥ cij′ , ci′j′ .

Combining them, and using the fact that cij ≤ ci′j + ci′j′ + cij′ (by the metric assumption), we can
conclude that cij ≤ 3αc

j (recall for indirectly connected client, α
c
j = αj).

The final result, showing a 3-approximation guarantee follows easily.

Theorem 4 The above algorithm gives a 3-approximation to the metric uncapacitated facility location

problem.

Proof The total cost of the solution is given by

PC =
∑

j∈C

cφ(j),j +
∑

i∈I

fi

The cost of the dual solution, which is a lower bound to PC is

DC =
∑

j∈C

αj =
∑

j∈C

αc
j +

∑

j∈C

αf
j
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The cost of the dual solution is a lower bound to the primal optimal. But we know that
∑

j:φ(j)=i α
f
j = fi

for each i ∈ I. Therefore, the second terms in the above expressions are equal. As for the first terms,
we can divide the clients into the directly and indirectly connected sets. For the directly connected set,
cφ(j),i =

∑
j α

c
j . For the indirectly connected set, the above proved lemma shows that cφ(j),i ≤ 3αc

j .
Combining everything, we have

PC =
∑

j∈C

cφ(j),i +
∑

i∈I

fi ≤ 3
∑

j∈C

αj = 3 ·DC.

Finally, we note that for all for all dual constraints of the form αj − βij ≤ cφ(j),j that are not tight, we
have shown:

1

3
· cφ(j),j ≤ αj ⇒

1

3
· cφ(j),j ≤ αj − βij ,

since βij = 0 for these constraints. And for all tight constraints, we have:

αj − βij = cφ(j),j .

Thus, we have shown that the approximate complementary slackness conditions (3) holds for α = 3,
which directly implies a factor 3 approximation.
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