
Approximation Algorithms and Hardness of Approximation April 16, 2013

Lecture 14
Lecturer: Alantha Newman Scribes: Marwa El Halabi

1 Semidefinite Programming and Graph Partitioning

In previous lectures, we saw how linear programs can help us devise approximation algorithms for various
NP-hard optimization problems. In this lecture, we will introduce a more general class of relaxations,
vector programs, which allow for variables to be vectors instead of scalars. In particular, vector programs
are a relaxation for problems that can be formulated as strict quadratic programs.

Definition 1 (Quadratic program) A quadratic program (QP) is an optimization problem whose ob-
jective function is quadratic in terms of integer valued variables, subject to quadratic constraints. If in
addition a quadratic program has all its monomials degree 0 or 2, then it’s a strict quadratic program.

As we will show later, vector programs are equivalent to semidefinite programs, which can be viewed
as a generalization of linear programs. We can solve semidefinite programs by the ellipsoid algorithm
up to an arbitrary small additive error ε, in time polynomial in the input size and log(1/ε).

We will illustrate the concept of semidefinite programming by examining some graph partitioning
problems. We start with the well known maximum cut problem.

1.1 Maximum Cut

Given an undirected graph G = (V,E), the goal of the maximum cut problem is to find a partition of
the vertices, (S, S̄), that maximizes the number of edges crossing the cut, i.e. edges with one endpoint
in S and the other endpoint in S̄. We denote the number of edges crossing the maximum cut by
OPTMax-Cut. The max cut problem is know to be NP-Hard, so our goal is to find a good polynomial
time approximation algorithm for it. Note that |E| is an upper bound on OPTMax-Cut. Thus, we can
achieve a 1

2 -approximation for max cut simply by placing each vertex in S or S̄ with probability 1/2.
Th max cut problem can be formulated as a quadratic program:

max
∑

(i,j)∈E

xi(1− xj) (1)

s.t xi ∈{0, 1} ∀i ∈ V,

where each variable xi is set to one if vertex i is in set S, and to zero if in set S̄. Note that an edge with
both ends in the same set will not contribute to the objective function.

If we relax the integer constraint in this QP, we have the following formulation:

max
∑

(i,j)∈E

xi(1− xj) (2)

s.t xi ∈ [0, 1] ∀i ∈ V.

If we can solve this relaxed version optimally, we will still be able to find a max cut. Consider the
solution for the relaxed QP, OPTrel. For any vertex h ∈ V , with fractional value assigned to xh, we can
rewrite the objective function (1) as follows. Let δ(h) denote all edges adjacent to vertex h.

∑
i,j∈E\δ(h)

xi(1− xj) + xh

A︷ ︸︸ ︷∑
j∈δ(h)

(1− xj) +(1− xh)

B︷ ︸︸ ︷∑
j∈δ(h)

xj .

1

Then if A ≥ B, we round xh to one, otherwise we round it to zero. Let’s denote by OPTrd the solution
we get after rounding OPTrel. Note that OPTrel ≤ OPTrd, so by solving the relaxed QP for max cut
and rounding the solution, we obtain an integral solution that is at least as good as OPTrel, which is at
least as good as the true optimal value OPTmax-cut. We can deduce from this that solving this particular
relaxed version is also NP-hard, since it boils down to solving exactly the NP-hard max cut problem
in polynomial time. So relaxing the integrality constraint does not help here. Instead, we’ll relax the
max cut problem to a semidefinite program.

Definition 2 (Semidefinite program (SDP)) A semidefinite program is an optimization problem
whose objective function is linear in terms of its variables xij, subject to linear constraints over the vari-
ables, with the additional constraint that the symmetric matrix X = [xij] should be positive semidefinite.

We recall the definition of positive semidefinite matrix:

Definition 3 A symmetric matrix X ∈ Rn×n is positive semidefinite (X � 0) iff for all y ∈ Rn,
yTXy ≥ 0.

Theorem 4 X ∈ Rn×n is a symmetric matrix, then the following are equivalent:

1. X is positive semidefinite.
2. All eigenvalues of X are non negative.
3. ∃V ∈ Rm×n, m ≤ n, s.t X = V TV .

Note that we can compute the eigendecomposition of a symmetric matrix X = QΛQT in polynomial
time, thus we can test for positive definiteness in polynomial time. However, the decomposition V TV
is not polynomial time computable, since taking the square root of the diagonal matrix Λ can lead to
irrational values. We can get an arbitrarily good approximation of this decomposition, so we can assume
we have the exact decomposition in polynomial time, given that this inaccuracy can be included in the
approximation factor.

By replacing the variable xij in a SDP by the inner product of the two vectors vi and vj in the
decomposition X = V TV corresponding to entry xij , we obtain an equivalent vector program:

max
∑
i,j

cijxij

s.t
∑
i,j

aijkxij = bk

xij = xji

X � 0

⇐⇒

max
∑
i,j

cij(vi · vj)

s.t
∑
i,j

aijk(vi · vj) = bk

vi ∈ Rn

The max cut problem admits a strict quadratic program formulation, which can be relaxed to a vector
program:

max
∑

(i,j)∈E

1− vi · vj
2

s.t vi ∈ {−1, 1}
=⇒

max
∑

(i,j)∈E

1− vi · vj
2

s.t vi · vi = 1

vi ∈ Rn

1.2 Random Hyperplan Rounding

Given a solution {vu| ∀u ∈ V } to the vector program of max cut with value OPTv, we round our solution
as follows:

2

• Pick a random vector r = (r1, r2, · · · , rn), s.t ri ∈ N (0, 1).

• For all u ∈ V :

{
r · vu ≥ 0 ⇒ u→ S

r · vu < 0 ⇒ u→ S̄
.

This rounding procedure is called random hyperplane rounding.

Theorem 5 There exist a polynomial time algorithm that achieves a 0.878-approximation of the maxi-
mum cut with high probability.

To prove Theorem 5, we will start by stating the following facts:

Fact 1: The normalized vector r
‖r‖ is uniformly distributed on Sn, the n-dimensional unit sphere.

This is because the distribution of r only depends on ‖r‖.

Fact 2: The projections of r on to unit vectors e1 and e2 are independent iff e1 and e2 are orthogonal.
Proof: Let’s denote r1 and r2 the projections of r onto e1 and e2, respectively. The projections of a
Gaussian random vector are also Gaussian random vectors, so it’s sufficient to have E[r1r2] = 0 for r1
and r2 to be independent. Since E[r1r2] = E[(eT1 r)(r

T e2)] = eT1 E[rrT]e2 = eT1 e2, Fact 2 follows directly.

Corollary 6 Let r′ be the projection of r onto a 2-dimensional plane, then r′

‖r′‖ is uniformly distributed
on a unit circle in the plane.

Lemma 7 The probability that edge (i, j) is cut is arccos(vi·vj)
π =

θij
π , where θij is the angle between

vectors vi and vj.

Proof Project vector r onto the plane containing vi and vj . It is easy to see that edge (i, j) is cut iff r
falls within the area formed by the vectors perpendicular to vi and vj , which has area equal to 2θij/(2π).

Lemma 8 For x ∈ [−1, 1], one can show that: arccos(x)
π ≥ 0.878

(
1−x
2

)
.

Let W be a random variable denoting the weight of the cut we obtain from solving the vector program
for max cut and then applying the random hyperplane rounding. Then:

E[W] = E[
∑

(i,j)∈E

Pr(edge (i, j) is cut)]

=
∑

(i,j)∈E

θij
π

(by lemma 7)

=
∑

(i,j)∈E

arccos(vi · vj)
π

≥ 0.878
1− (vi · vj)

2
(by lemma 8)

= 0.878 OPTv
≥ 0.878 OPTmax-cut

Given this expected value, one can show the existence of an algorithm that achieves a 0.878-
approximation of the maximum cut in polynomial time, with high probability. This concludes the
proof of Theorem 5.

Finally, we give an example to show that this approximation factor is almost tight. Consider a 5-cycle
graph. OPTmax-cut = 4, while the optimal solution for the SDP is placing the 5 vector in a 2-dimensional
plane with an angle 2π

5 between each two vectors. The approximation factor achieved in this case is
0.884.

3

1.3 Correlation Clustering

Given an undirected graph G = (V,E), we assign for each edge (i, j) ∈ E the weights W+
ij and W−ij to

denote how similar or different the endpoints of this edge are, respectively. (In our analysis we’ll assume
each edge have only one of these two kind of weights, but the approximation algorithm will still work in
general.) The goal of the correlation clustering problem is to find a partition of the graph into clusters
of similar vertices. In other words, we aim to maximize the following objective function:

max
∑

i,j are in the same cluster

W+
ij +

∑
i,j are in different clusters

W−ij .

We denote the optimal value by OPTcc.

The correlation clustering problem also admits a simple 1
2 -approximation algorithm by picking the

best of the following two procedures:

1. Form one cluster: S = V .

2. Set each vertex to be in its own cluster.

Note that if the total sum of W+
ij in the graph is greater than the total sum of W−ij , choice 1 will guar-

antee at least half OPTcc, otherwise choice 2 will.

The correlation clustering problem admits an exact formulation that can be relaxed to a vector
program:

max
∑

(i,j)∈E

(
W+
ij (vi · vj) +W−ij (1− vi · vj)

)
s.t vi ∈ {e1, e2, · · · , en} ∀i ∈ V

=⇒

max
∑

(i,j)∈E

(
W+
ij (vi · vj) +W−ij (1− vi · vj)

)
s.t vi · vi = 1

vi · vj ≥ 0

vi ∈ Rn

where ek denotes the unit vector with the kth entry set to one. In the exact formulation, vi is set to ek
if vertex i belongs to cluster k.

1.4 Rounding Algorithm for Correlation Clustering

Given a solution {vu| ∀u ∈ V } to the vector program of correlation clustering with value OPTv, we
round our solution as follows:
- Pick two random vectors r1 and r2 s.t each entry is drawn from the standard distribution N (0, 1).
- Form 4 clusters as follows:

R1 = {i ∈ V : r1 · vi ≥ 0 and r2 · vi ≥ 0}
R2 = {i ∈ V : r1 · vi ≥ 0 and r2 · vi ≤ 0}
R3 = {i ∈ V : r1 · vi ≤ 0 and r2 · vi ≥ 0}
R4 = {i ∈ V : r1 · vi ≤ 0 and r2 · vi ≤ 0}.

Theorem 9 There exists a polynomial time algorithm that achieves a 3
4 -approximation of the correlation

clustering problem with high probability.

Proof We start with a useful lemma:

Lemma 10 For x ∈ [0, 1], one can show that (1− acos(x)π)2

x ≥ 0.75 and 1−(1− acos(x)π)2

1−x ≥ 0.75.

4

Let xij be a random variable that takes the value one if i and j are in the same cluster. Note that the
probability that vi and vj are not separated by either r1 or r2, is (1− arccos(vi·vj)

π)2. Thus,

E[xij] = (1− arccos(vi · vj)
π

)2

Let W be a random variable denoting the weight of the clustering we obtain from solving the vector
program of correlation clustering and then applying the random 2-hyperplane rounding.

E[W] = E[
∑

(i,j)∈E

W+
ij xij +W−ij (1− xij)]

=
∑

(i,j)∈E

W+
ij (1− arccos(vi · vj)

π
)2 +W−ij (1− (1− arccos(vi · vj)

π
)2)

≥ 0.75
∑

(i,j)∈E

W+
ij (vi · vj) +W−ij (1− vi · vj) (by lemma 10)

= 0.75 OPTv
≥ 0.75 OPTcc.

Given this expected value, one can show the existence of an algorithm that achieves a 0.75-approximation
for the correlation clustering problem in polynomial time, with high probability.

5

