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1 Coloring 3-Colorable Graphs

In previous lectures, we illustrated how to formulate the max cut problem as a vector programs (or
SDP), by relaxing the variables in the exact formulation from scalars to vectors. We showed that solving
the SDP up to an arbitrarily small additive error and then rounding the vector solution to a feasible
solution for the original problem provides a polynomial time approximation algorithm for this problem.
In this lecture, we will continue exploring SDP by studying the problem of coloring a 3-colorable graph,
which is a special instance of the general graph coloring problem.

In the graph coloring problem, we are given an undirected graph G = (V,E). Our goal is to find a
legal coloring (also called proper coloring, or simply coloring) of the graph with the minimum number
of colors. A legal coloring of a graph is a coloring where each vertex is assigned a color such that no
two adjacent vertices have the same color. This problem is known to be NP-hard and even finding an
approximation with a factor better than n1−ǫ, for any ǫ > 0 is NP-hard. Instead, we focus our attention
on special instances of the graph coloring problem in which we are given a k-colorable graph, and our
goal is to find a legal coloring of this graph with the fewest number of colors. In what follows, we will
assume G is a 3-colorable graph. Note that it is still NP-hard to decide if a graph can be colored with
three colors. It is also NP-hard to find a coloring of a 3-colorable graph with at most five colors. In our
discussion, we will focus on finding a coloring better than n.

1.1 Coloring with O(
√
n) Colors

We denote the maximum degree of a graph by ∆.

Lemma 1 We can efficiently color any graph with ∆+ 1 colors, by greedily coloring the graph.

Given a 3-colorable graph G, we can find a legal coloring using at most O(
√
n) colors.

1. If G has a vertex v with degree d(v) ≥ √
n, we use three new colors to color this vertex and its

neighbors δ(v). Since G is 3-colorable, the neighbors of any vertex v form a bipartite graph (since
none of these vertices can have the same color as vertex v). Thus, we can color the set δ(v) using
two colors. We use a third color to color vertex v. We repeat this step until no vertices with degree
higher than

√
n remain.

2. Once G has ∆ <
√
n, we can apply Lemma ?? to color the rest of the graph using

√
n colors.

Note that Step 1 will be executed at most n√
n
-times, since at each iteration we are coloring at least√

n vertices. At each of these iterations we are using three new colors. So at the end of this phase, we
will have used at most 3

√
n colors. In the second step, we use only

√
n colors. So in total we will color

the graph with at most 4
√
n colors.

In the following sections, we note that we will often use Õ() notation to hide log factors.

1.2 Õ(n0.631) Colors

To find a coloring of a k-colorable graph, we need to partition the graph into sets such that all edges are
cut. We want to formulate this problem as an SDP, so we represent each vertex by a vector vi ∈ R

n. As
we have seen in the previous lecture, if we are partitioning the vertices randomly, two vertices are more
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likely to be separated if their corresponding vectors are away from each other, which corresponds to a
small inner product, so our goal is to minimize the quantity vi · vj for any edge (i, j) ∈ E. We formulate
the following vector program for the graph coloring problem for a k-colorable graph:

min λ

s.t vi · vj ≤ λ ∀(i, j) ∈ E

vi · vi = 1 ∀i ∈ V

vi ∈ R
n

When G is 3-colorable, there exists a feasible solution of the above SDP for λ = − 1
2 . To see this, note

that any legal 3-coloring of G will partition the vertex set into three independent sets (an independent
set is a set where no two vertices are connected by an edge) where each set correspond to a color. Thus
an optimal exact solution for the above SDP would consist of mapping each independent set to one of
the ‘color’ vectors, which are each at an angle of 2π

3 from each other. Thus, any legal coloring of a
3-colorable graph is a feasible solution of the following SDP:

vi · vj ≤ −1

2
∀(i, j) ∈ E

vi · vi = 1 ∀i ∈ V

vi ∈ R
n

To give a coloring of G, we will solve this SDP and then apply a randomized rounding strategy to
color the vertices. The goal in rounding is to avoid using too many colors and at the same time avoid
introducing monochromatic edges. We will use the following notion of a semicoloring.

Definition 2 (k-Semicoloring) A k-semicoloring of G is a k-coloring of the vertices such that at most
n
4 edges have endpoints of the same color.

Note that any k-semicoloring will directly result in a k-coloring of the rest of the graph after removing
all the monochromatic edges, so we obtain a k-coloring of at least n

2 vertices.

Lemma 3 If we can semicolor a graph G with k colors, then we can color G with k logn colors.

Proof Each round we use k colors and remove at least half the vertices. There are logn rounds, so
we use at most k logn colors.

Now we are ready to present our approximation algorithm:

1. Solve the SDP on G.

2. Set t = 2 + log3 ∆ and pick t random vectors {r1, r2, · · · , rt} where each entry ri is drawn from
the standard normal distribution N (0, 1).

3. These t vectors define 2t different regions based on the sign of the dot products with each of the t
vectors. We color each of these regions with a different color.

Lemma 4 Random hyperplane rounding with t hyperplanes produces a semicoloring using 4 ∆log3 2

colors with probability at least 1/2.

Proof The number of colors we are using is 2t = 4 · 2log3 ∆ = 4∆log
3
2. Using the trivial upper bound

of n on ∆, we see that this is at most 4n0.631 colors.
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We want to show that our coloring procedure produces a semicoloring on G, so we need to show that
the number of monochromatic edges is at most n

4 with probability at least 1/2.

Pr(edge (i, j) is monochromatic) = (1− arccos(vi · vj)
π

)t

= (1− arccos(−0.5)

π
)t

= (1− 1

π

2π

3
)t

= (
1

3
)t

=
1

9∆
.

Let m = |E|. Then m ≤ n∆
2 . Let X be a random variable denoting the number of monochromatic edges

in our coloring. Then:

E[X ] =
∑

(i,j)∈E

Pr(edge (i, j) is monochromatic) ≤ n∆

2
· 1

9∆
=

n

18
.

By Markov’s inequality, we have:

Pr[X ≥ n

4
] ≤ E[X ]

n/4
≤ 2

9
.

Then Lemma 4 holds with probability at least 7
9 .

Therefore this algorithm results in a O(n0.631 logn) = Õ(n0.631)-approximation which is even worst
than the first simple approximation algorithm, but it provides us with a way to combine the above
algorithm with the combinatorial algorithm to get a Õ(n0.387)-approximation algorithm.

1.3 Õ(n0.387) Colors

Let θ be some parameter that we define later. The following algorithm merges the two approximation
algorithms we presented so far.

1. If G has a vertex v with degree d(v) ≥ θ, we use three new colors to color the vertex v and its
neighbours δ(v). We repeat this step until no vertices with degree at least θ remain.

2. Once G has ∆ < θ, we use the second algorithm to color the rest of the graph with 4 θlog3 2 logn
colors.

Step 1 will use at most 3n
θ colors. Setting

n
θ = θlog3 2, we have n = θlog3 6. Then we define θ as

θ = nlog6 3 ≈ n0.6131. In total, this approximation algorithm uses Õ(nθ ) = Õ(n0.387) colors.

1.4 Õ
(

n1/4
)

Colors via Large Independent Sets

We now show how to color a 3-colorable graph with Õ
(

n1/4
)

colors in polynomial time. To do this, we
use the fact that in a legal coloring, a set of vertices of the same color form an independent set. We use
this fact to construct the following general algorithm:

1. Find an independent set I.

2. Color the vertices in I with a new color.
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3. Remove I.

4. Repeat all the steps.

If in each iteration of Step 3 of the above algorithm, at least a γ-fraction of vertices are removed,
then after k iterations, at most (1 − γ)kn vertices remain. If we remove vertices until there is at least
one vertex, then using log(1− x) ≤ −x for |x| > 1, we derive kmax, the maximum number of iterations,
as follows:

(1− γ)kmaxn ≥ 1 ⇒ kmax ≤ 1

γ
logn.

Thus, if we have an algorithm that colors a γ-fraction of the graph at each iteration, then the algorithm
will use O( 1γ lnn) colors.

As mentioned previously, we would like to map all the vertices onto vectors in a 2-dimensional plane,
so that any two vectors corresponding to the two endpoints of an edge are 120 degrees apart. There are
three such vectors, each corresponding to a single color, which are uniquely determined up to a rotation.
Since such a solution corresponds to an optimal integral solution and can therefore not solve such an SDP,
we relaxed the dimension of vectors onto which the vertices are mapped. However, after the relaxation,
there can be more than three vectors satisfying the constraints, and it is no longer straightforward to
map these vectors to colors. We still know that two vectors vi and vj representing an edge are far away
from each other, i.e. vi · vj = −1/2 for every (i, j) ∈ E. To benefit from such a structural guarantee,
we randomly sample an n-dimensional vector r and consider vectors that are close to it. Intuitively,
vectors that are close to r should also be close to each other and therefore form an independent set.
More formally, let

r = (r1, . . . , rn) such that ri ∈ N (0, 1), ∀i ∈ {1, . . . , n},
and define

S(ǫ) = {i ∈ V : vi · r ≥ ǫ},
where ǫ will be determined later. Note that S(ǫ) might not be an independent set. We also define

S′(ǫ) = {i ∈ S(ǫ) : i has no neighbors in S(ǫ)},

which is an independent set. (Observe that a “smarter” way to define S′(ǫ) would be to find a maximal
matc hing in S(ǫ) and delete the vertices defining the matching. However, it would make our analysis
more complicated.) Next, our goal is to estimate the size of S′(ǫ).

First we recall some basic properties about the normal distribution N (0, 1) such as its probability
density and cumulative distribution functions:

p(x) =
1√
2π

e−
x
2

2 ,

Φ(x) =

x
∫

−∞

p(s)ds ⇒ Φ̄(x) = 1− Φ(x) =

∞
∫

x

p(s)ds.

Observe that vi · r, for some vertex i ∈ V , does not depend on the vector vi since the distribution
of r is spherically symmetric. Therefore, we can rotate vi so that vi is any vector and without loss of
generality, we can assume that vi = (1, 0, . . . , 0), and thus vi · r = r1. Then, vi · r is distributed as
N (0, 1). This implies that:

Pr[i ∈ S(ǫ)] = Φ̄(ǫ) ⇒ E [ |S(ǫ)| ] = n Φ̄(ǫ). (1)

Now, we prove the following lemma, which gives an upper bound on the probability that a vertex i
“fails”, i.e. is not included in S′(ǫ), the independent set picked by our algorithm. In other words, we
wish to compute the probability that vertex i does not belong to S′(ǫ) given that it belongs to S(ǫ).
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Lemma 5
Pr[i /∈ S′(ǫ) | i ∈ S(ǫ)] ≤ ∆Φ̄

(√
3ǫ
)

. (2)

Proof We have

Pr[i /∈ S′(ǫ) | i ∈ S(ǫ)] = Pr[∃(i, j) ∈ E : vj · r ≥ ǫ | vi · r ≥ ǫ]. (3)

From vi · vj = −1/2 and vi · vi = vj · vj = 1, we conclude that vj can be written in the following way

vj = −1

2
vi +

√
3

2
u, such that vi · u = 0 and u · u = 1.

The last equation implies

u =
2√
3

(

vj +
1

2
vi

)

.

If vi · r ≥ ǫ and vj · r ≥ ǫ, then

u · r = 2√
3

(

vj · r +
1

2
vi · r

)

≥ 2√
3

(

ǫ +
1

2
ǫ

)

=
√
3ǫ.

Thus, we see that if i /∈ S′(ǫ) and i ∈ S(ǫ) (i.e. if both viṙ and vj · r are at least ǫ), then it must be the
case that the projection of r onto u is at least

√
3ǫ. However, note that if r · u ≥

√
3ǫ, then this does

necessarily imply that both r · vi and r · vj are at least ǫ.
Since u · vi = 0, r · u and r · vi are independently distributed. Thus, we have:

Pr[vj · r ≥ ǫ|vi · r ≥ ǫ] ≤ Pr[u · r ≥
√
3ǫ|vi · r ≥ ǫ]

= Pr[u · r ≥
√
3ǫ]

= Φ̄(
√
3ǫ).

To conclude the proof, we use a union bound over the neighbors of i. Since there are at most ∆ of them,
we have:

Pr [∃(i, j) ∈ E : vj · r ≥ ǫ | vi · r ≥ ǫ] ≤
∑

j:(i,j)∈E

Pr[vj · r ≥ ǫ | vi · r ≥ ǫ] ≤ ∆Φ̄
(√

3ǫ
)

,

which implies the lemma.

So, how should we choose ǫ? Intuitively, a smaller value of ǫ should result in the smaller number of
edges in S(ǫ), since two adjacent vertices should be far from each other. On the other hand, we would
like S(ǫ) to be large. We will set ǫ so that

∆Φ̄
(√

3ǫ
)

≤ 1/2. (4)

This will upper bound the probability that a vertex in S(ǫ) does not belong to S′(ǫ). Note that, along
with (1) and Lemma 5, it would further imply

E[|S′(ǫ)|] ≥ E[|S(ǫ)|]
2

= n
Φ̄(ǫ)

2
. (5)

Before we state the main result of this section, we state the following lemma without a proof.

Lemma 6 For x > 0,
x

1 + x2
p(x) ≤ Φ̄(x) ≤ 1

x
p(x).
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Now we can state the following theorem which lower bounds the size of S′(ǫ).

Theorem 7
E[|S′(ǫ)|] ≥ Ω

(

n∆− 1

3 (ln∆)−
1

2

)

.

Proof First, we derive ǫ so that (4) holds. By Lemma 6 we have

Φ̄
(√

3ǫ
)

≤ 1√
3ǫ

1√
2π

e−
3ǫ

2

2 . (6)

From (4) and (6) we conclude it is sufficient to set ǫ =
√

2
3 ln∆.

To estimate the size of S′(ǫ), we must lower bound the value of Φ(ǫ). We obtain the following bound
by applying Lemma 6 and using inequality x

1+x2 ≥ 1
2x , for x ≥ 1, as follows

Φ̄(ǫ) ≥ p(ǫ)
ǫ

1 + ǫ2

=
1√
2π

e−
ǫ
2

2

ǫ

1 + ǫ2

≥ 1√
2π

e−
ln∆

3

1

2ǫ

≥ ∆− 1

3 (ln∆)
− 1

2 .

Applying the inequality in Equation (5) concludes the proof.

Theorem 7 says that in each iteration of the algorithm, we are able to find an independent set of size
at least Õ

(

n∆−1/3
)

. This implies that we can color a given 3-colorable graph with O
(

∆1/3 logn
)

=

Õ
(

∆1/3
)

colors. We can summarize the given approach, which we call Independent-Set-Coloring,
as follows:

1. Solve SDP.

2. Pick a random vector r.

3. Pick a set S(ǫ) which is ǫ-close to r.

4. Let S′(ǫ) ⊆ S(ǫ) be vertices with degree zero in S(ǫ).

5. Remove the vertices in the independent set S′(ǫ) from the graph.

6. Repeat from Step 2 while the graph is non-empty.

Note that there is no need to resolve SDP in Step 1 in each iteration, since a solution for the initial
graph is valid for any subgraph.

Finally, we combine the algorithm from Section 1.1 with the algorithm Independent-Set-Coloring.

1. If G has a vertex v with degree d(v) ≥ n3/4, we use three new colors to color the vertex v and its
neighbours δ(v). We repeat this step until no vertices with degree at least n3/4 remain.

2. Once G has ∆ < n3/4, we use the algorithm Independent-Set-Coloring to color the rest of
the graph with at most Õ((n3/4)1/3) = Õ(n1/4) colors.

Observe that Step 1. will execute at most n/n3/4 = n1/4 times, using at most n1/4 colors. Thus, the
total number of colors used is at most Õ(n1/4).
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