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1 Greedy Algorithms

In this lecture we study greedy approximation algorithms, algorithms finding a solution in a number of
locally optimal steps. Some of their advantages are:

• easy-to-implement

• fast

• first try at tackling a problem

• optimal in some cases

• can give deeper insight on the structure of the problem in question and aid us in designing better
algorithms

We will demonstrate the last point on the example of the Identical Parallel Machine Scheduling problem.

1.1 Identical Parallel Machine Scheduling Problem

In the previous lecture we saw the ”List-Scheduling algorithm” (LS; see algorithm 1), a 2-approximation
for this problem. We will try to improve its approximation-ratio by finding an infinite family of instances
with an approximation ratio of 2 and identifying the bottlenecks.

input : n jobs with processing time {p1, p2, . . . , pn} and m machines.
output: The assignment of jobs to machines.

1. Order the jobs arbitrarily.
2. In this order, assign each job to the machine that currently has the least work assigned to it.

Algorithm 1: List-Scheduling algorithm

Instance: we are given m machines, m(m − 1) jobs with processing times 1, and a single job with
processing time m. Let LS schedule the 1 jobs first, and the m job last. The makespan of this schedule
is clearly 2m − 1. OPT schedules the 1 jobs on m − 1 machines, and the m job on the remaining one.
The makespan of OPT is m. Thus, the approximation ratio approaches 2, as m grows towards infinity.

input : n jobs with processing time {p1, p2, . . . , pn} and m machines.
output: The assignment of jobs to machines.

1. Order the jobs in descending order according to their processing times.
2. In this order, assign each job to the machine that currently has the least work assigned to it.

Algorithm 2: Largest Processing Time Rule algorithm

The issue with LS is with the handling of the long jobs. Using this knowledge we design a new algorithm,
the ”Largest Processing Time Rule algorithm” (LPT; see algorithm 2). It schedules in order from the
largest to the smallest job, instead of using an arbitrary order. We claim that LPT is a 4/3-approximation.
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Theorem 1 LPT is a 4/3-approximation.

Proof Order the n jobs such that p1 ≤ p2 ≤ · · · ≤ pn. Without loss of generality, we assume job
n finishes last. If it did not finish last, removing it would not change the schedule of LPT, but only
decrease OPT. Thus, if the bound holds for the case where n finishes last, it must also hold for cases
where it does not, i.e., OPT is worse: LPT ≤ 4/3 ·OPT ∧OPT ′ ≥ OPT ⇒ LPT ≤ 4/3 ·OPT ′. So, the
makespan is

STARTn + pn ≤
1

m

∑
i 6=n

pi + pn ≤ OPT + pn.

Using the same technique as in the case of LS gets us an approximation ratio of 2. Instead of refining
our bounds on OPT, we will try to bound pn. Clearly, if pn ≤ OPT/3, then LPT is 4/3-OPT. We only
have to show that larger pn values don’t violate our bounds. We claim if pn > OPT/3, then LPT gives
an optimal schedule.

Claim 2 If pn > OPT/3, LPT is optimal.

Proof We prove this by contradiction. Assume the l-th job completes after time OPT. We consider
the schedule before the l-th job. It is easy to see that in this schedule each machine must be assigned at
least one job and at most two (since otherwise the length of the schedule would already be bigger than
OPT). Now order the machines and select i such that the machines M1 through Mi have a single job
assigned to them and machines Mi+1 through Mm have two. Let’s call the jobs on the first i machines
long jobs, the ones on the remaining ones short jobs (l is also considered a short job). LPT would
schedule l so that it finishes after OPT. This means l can’t be scheduled on a machine with a long job,
and since l is smaller than any job that is already scheduled (by the rules of LPT) no short or long job
can be scheduled with another long job. Hence, to not violate OPT any schedule needs i machines to
schedule the long jobs and the short jobs must be scheduled on the remaining machines (m− i many).
However, as there are 2(m − i) + 1 short jobs and each machine can execute at most two jobs, this is
clearly impossible and we conclude that there is no schedule better than LPT and our claim holds.

We have shown that LPT returns either an optimal schedule or one with length at most 4/3OPT, thus
LPT is indeed a 4/3-approximation algorithm.

The 4/3 bound is tight, an infinite family of instances showing this is given below.

Instance: we are given m machines, and 2m+1 jobs. There are three jobs with processing time m, and
2 jobs with processing times m+1,m+2, . . . , 2m− 1 each. In case of LPT, all but one of the machines
get two jobs with a total processing time of 3m − 1, and a single machine gets three jobs with a total
of 4m− 1 processing time. Thus, the makespan is 4m− 1. OPT schedules the three m jobs on a single
machine, and the remaining jobs on the remaining m−1 machines, such that each of those machines get
jobs with a total processing time of 3m, thus the makespan of OPT is 3m. As m grows towards infinity
the approximation ratio approaches 4/3.

There is an even better approximation algorithm, a so-called PTAS1, for this problem, but it is not
covered by this lecture.

1.2 Set-Cover Problem

The next problem we consider is the Set-Cover Problem. We are given a universe of n elements
U = {e1, e2, · · · , en}, a collection of subsets of the universe T = {s1, s2, · · · , sk}, and a cost function

1Polynomial Time Approximation Scheme: For any ε > 0 we can find a (1 + ε)-approximate solution in time that is
polynomial for any fixed ε (for example, the running time may be O(n1/ε)).
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c : T → R mapping each subset to a real-valued cost. The task is to find a minimum cost subset of
collections containing all elements.

Example: assume we have 6 elements e1, e2, · · · , e6 and 4 sets S1 = {e1, e2, e3}, S2 = {e1, e4}, S3 =
{e2, e5}, S4 = {e3, e6}, and a cost function c(Si) = 2. The optimal solution for this instance is the
set {S2, S3, S4} with a total cost of 6. Note: {S1, S2, S3, S4} is also a feasible (however, not optimal)
solution.
We discuss a greedy approximation algorithm for this problem. The algorithm greedily chooses the set
that covers most elements per unit cost, following the slogan “most bang for the buck”.

input : A collection of subsets T = {s1, s2, · · · , sk} of the set U = {e1, e2, · · · , en}.
output: A subcollection of subsets that covers U .

1. C ← ∅.
2. While C 6= U

a. Find the set S that minimizes c(S)
|S−C| .

b. Set price(e) = c(S)
|S−C| for every e ∈ S − C.

c. C ← C ∪ S.

Algorithm 3: Greedy algorithm (“most bang for the buck”)

Example: in the example above, initially, c(S1)
|S1−C| = 2/3 and c(S2)

|S2−C| =
c(S3)
|S3−C| =

c(S4)
|S4−C| = 1. Thus, S1

is chosen. In the second iteration, c(S2)
|S2−C| =

c(S3)
|S3−C| =

c(S4)
|S4−C| = 2. The algorithm then chooses S2, S3

and S4 in some arbitrary order.

Theorem 3 The greedy algorithm is an Hn-approximation algorithm (where Hn = 1+1/2+1/3+ . . .+
1/n ≈ lnn+O(1)).

Proof Consider the elements in the order e1, e2, . . . , en they were chosen by the algorithm, breaking
ties arbitrarily. Since the cost of a chosen set is distributed among the newly covered elements, we have

that c(Sol) =
n∑

k=1

price(ek). We prove the bound price(ek) ≤ OPT
n−k+1 and this directly proves the theorem

since c(Sol) =
n∑

k=1

price(ek) ≤
n∑

k=1

OPT
n−k+1 = HnOPT.

To prove that price(ek) is at most OPT/(n− k + 1), it is enough to notice that before covering the kth
element, at most k − 1 elements have been covered. Therefore, at most n − k + 1 remain uncovered.
These uncovered elements can be covered at cost at most OPT (by just picking an optimal covering).
Therefore, there are subsets not chosen with cost per element at most OPT/(n − k + 1), since the
algorithm chooses the subset that minimizes the cost per element, the price is at most OPT/(n−k+1).

Tight example: consider the set U = {e1, e2, . . . , en} and the collection of subsets {{ei}|i =
1, 2, . . . , n} ∪ {U}. The cost of the subset U is 1 + ε while the cost of {ei} is 1

n−i+1 (subset {e1}
costs 1/n, e2 costs 1/(n − 1), ...etc.). The algorithm will choose all singletons with a total cost of Hn

while the optimal is choosing only the subset U with cost 1 + ε.
Note: the problem cannot be approximated better than by a factorO(log n) unless NP ⊆ DTIME(nlog logn).

Theorem 4 If for each subset in the collection |S| ≤ t then the greedy algorithm is an Ht-approximation
algorithm.

3



1.3 K-center Problem

The last problem we study is the problem of placing k centers to minimize the maximum distance of
customers to their nearest center. The problem is defined as given a set of n points V and a metric dij
on the points. We need to find a subset S ⊂ V such that |S| = k and the maximum distance from any
point in V to the closest point to it in S is minimized.
The greedy algorithm “furthest away” just iteratively chooses points that are furthest away from already
chosen points.

input : Set of points V = {p1, p2, . . . , pn}
output: A subset S of V of size k

1. Pick any arbitrary point p, set S ← {p}.
2. While |S| < k, find the point whose minimum distance to S is maximum and add it to S.

Algorithm 4: Furthest away algorithm

Theorem 5 “Furthest away” is a 2-approximation algorithm for the k-center problem.

Proof Consider an optimal solution O = {o1, . . . , ok}. This set of points defines a Voronoi diagram. If
each cell has one point from S, then a point p in any cell k is at most OPT away from ok. Moreover, sk
(the point in S lying in cell k) is also at most OPT away from ok. Therefore, by the triangle inequality,
p is at most 2 · OPT from sk. Otherwise, there must be a cell k with two points from S (call them s
and s′, included in S in that order, without loss of generality). Since s′ was chosen to be the furthest
point from the previously chosen points, then the maximum distance of any point to a point in S is at
most d(ok, s) + d(ok, s

′) which is again at most 2 · OPT . This proves that the algorithm is indeed a
2-approximation algorithm.
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