
Approximation Algorithms and Hardness of Approximation May 7 and 10, 2013

Lecture 20 and 21
Lecturer: Ola Svensson Scribes: Siddhartha Brahma

1 PCP theorems using Parallel Repetition

We will concentrate on 2CSPW instances. The main PCP theorem, of which we have seen a proof,
shows that there exists a constant ε > 0 such that it is NP-Hard to distinguish between instances of
2CSPW for which all the constraints can be satisfied and those for which atmost ε fraction of constraints
can be satisfied. This can be used to show the hardness of approximation of several NP-Hard problems.
However, for other problems we need “stronger” PCP theorems which have much smaller ε’s without
making W too large. The key to get such a guarantee is via Raz’s Parallel Repetition Theorem.

It will be useful to define the following properties.

1. Let φ be an instance of a 2CSP problem. It is said to have the projection property if for each
constraint φr(y1, y2) and each value of y1 there is an unique value of y2 such that φr(y1, y2) = 1.
In other words, knowing the value of y1 is enough to know the value of y2 such that φr(y1, y2) = 1.
More formally, for each constraint φr, there is a function h : [W] → [W] such that (u, v) satisfies
the constraint iff h(u) = v.

2. A 2CSP instance is said to be regular if each variable appears in the same number of constraints.
Thus, if we construct a bipartite graph with vertices representing variables on the left (yi) and
vertices representing constraints on the right (φr(yi, yj)) and there is an edge from yi to every
φr(yi, ·) or φr(·, yi), then the left vertices have the same degree.

Raz’s Parallel Repetition theorem is the following.

Theorem 1 For all ε > 0, there exists W = W (ε) = poly(1ε) such that given a 2CSPW instance that
is regular and has the projection property, it is NP-Hard to distinguish instances which are satisfiable
from those in which atmost a fraction ε of the constraints are satisfiable. Alternatively, there exists an
absolute constant c > 1 such that for every t ≥ 1 GAP2CSPW (ε) (for regular 2CSP instances satisfying
the projection property) is NP-hard for ε = 2−t and W = 2ct.

We will not present its proof (which is quite involved!), but try to give some intuition. Suppose φ either
has val(φ) = 1 or val(φ) = ε, but deciding which case holds is NP-hard. We can easily create a powered
version of φ (call it φt) by taking t-tuples of variables of φ and defining constraints on them. Thus
two variables (y1, . . . , yt) and (z1, . . . , zt) of φt has a corresponding constraint (φ1(y1, z1), . . . , φt(yt, zt)).
From the verification viewpoint, this corresponds to running t instances of the verifier of φ in a parallel
fashion. Clearly, if an assignment of φ satisfies ε fraction of constraints, then we can get an assignment
of φt that satisfies at least εt fraction of constraints. However, it turns out that this is not tight and
the fraction of constraints that can be satisfied in φt can be much larger than εt. However, Raz’s result
shows that no assignment can satisfy more than εct fraction of constraints of φt, where c depends on W .

2 H̊astad’s 3-bit PCP

Another way to obtain stronger PCPs is by keeping the soundness requirement for the verifier around
1/2 but by reducing the number of bits of the proof that need to be read by the verifier. In the main
PCP theorem, we insisted on reading O(1) bits. However, the following remarkable theorem due to
H̊astad shows that this number can be brought down to 3 without affecting soundness and completeness
of the verifier (almost)!

1

Theorem 2 For every δ > 0 and every language L ∈ NP , there is a PCP verifier VH that reads 3 binary
queries having completeness 1− δ and soundness 1

2 + δ. Moreover, the tests used by VH are linear. That
is given a proof π̃ ∈ {0, 1}n, VH chooses (i1, i2, i3) and b ∈ {0, 1} according to some distribution and
accepts iff π̃1 + π̃2 + π̃3 = b (mod 2).

In fact, this theorem can be used to easily prove that it is NP-Hard to approximate MAX-3SAT with
an approximation factor of 7

8 + ε for any ε > 0. The remainder of the lecture will be about proving this
theorem. Towards this, we will introduce the powerful tool of Fourier Analysis (a discrete analog of the
classical Fourier Analysis in the continuous domain). Rather than working with functions in GF (2), it
will be much more convenient for us to work with functions f : {−1,+1}n → R. This can be done by
replacing the role of 0 by 1 and that of 1 by -1 in functions over GF (2). Since addition modulo 2 for the
binary alphabet represents parity, the corresponding operation for {−1,+1} becomes a multiplication.
Thus for f ′ : {0, 1}n → {0, 1} and f : {−1,+1}n → R

f ′(x1, x2, x3) = x1 + x2 + x3 corresponds to f(x1, x2, x3) = x1 · x2 · x3

Thus, we will be interested in the family of functions f : {−1,+1}n → R which can also be thought of
as vectors in R2n via the truth table. In what follows, unless otherwise stated, x will denote the vector
(x1, . . . , xn) ∈ {−1,+1}n. We will define a vector space Sn over this family with the following inner
product

< f, g >= E
x∈{−1,+1}n

[f(x)g(x)]

Also, for S ⊆ [n] = {1, . . . , n}, let χS(x) =
∏
i∈S xi. The following lemma shows that these form an

orthonormal basis for Sn.

Lemma 3 The set of functions {χS : S ⊆ [n]} (called characters) form an orthonormal basis of Sn.

Proof Clearly the number of characters is 2n. We have

< χS , χS > = E
x∈{−1,+1}n

[χS(x)χS(x)] = E
x∈{−1,+1}n

[∏
i∈S

x2i

]
= 1

This shows that the characters have unit norm. Further, if S 6= T , then

< χS , χT >= E
x

[∏
i∈S

xi
∏
i∈T

xi

]
(a)
= E

x

 ∏
i∈S4T

xi

 (b)
=

∏
i∈S4T

E
x
[xi] = 0

Here S4T denotes the symmetric difference between the sets S and T . (a) is true because if i ∈
S ∩ T , then the term inside the product becomes x2i which is 1. (b) is true because the xi’s are chosen
independently with equal probability of being -1 or +1. The above lemma shows that any function in

the space Sn can be expresses as a linear combination of the characters.

f(x) =
∑
S⊆[n]

f̂SχS(x) where f̂S =< χS , f >

The f̂S are called the Fourier Coefficients of f . As an illustration, consider space of functions S1. The
characters are (written in the vector form) χ∅ = [1, 1] and χ{1} = [−1, 1]. Then for the function f = [0, 1]
the fourier coefficients are

f̂∅ =< f, χ∅ >=
1

2
, f̂{1} =< f, χ{1} >=

1

2

The following facts about fourier coefficients of f can be easily proved. These are the analogues of similar
results in the continuous domain.

2

Lemma 4 For any f, g ∈ Sn, we have

1. < f, g >=
∑
S⊆[n] f̂S · ĝS

2. < f, f >=
∑
S⊆[n] f̂

2
S

Proof

< f, g > = E
x
[(
∑
S

f̂SχS(x))(
∑
T

ĝTχT (x))]

=
∑
S,T

f̂S ĝTE
x
[χS(x)χT (x))]

=
∑
S

f̂S ĝS

Using this machinery, we are actually now in a position to give a simple proof of the linearity test

that was used in the proof of the PCP theorem before.

Theorem 5 For each function f : {−1,+1}n → {−1,+1} that satisfies

Px,y[f(xy) = f(x)f(y)] ≥ 1

2
+ δ

there exists S ⊆ [n] such that f̂S ≥ 2δ.

Proof Since the domain of f is {−1,+1}, we have

E
x,y

[f(xy)f(x)f(y)] = Px,y[f(xy) = f(x)f(y)]− Px,y[f(xy) 6= f(x)f(y)] ≥ (
1

2
+ δ)− (

1

2
− δ) = 2δ

On the other hand

E
x,y

[f(xy)f(x)f(y)] = E
x,y

[(
∑
S

f̂SχS(xy))(
∑
T

f̂TχT (x))(
∑
U

f̂UχU (y))]

=
∑
S,T,U

f̂S f̂T f̂U E
x,y

[χS(xy)χT (x)χU (y)]

=
∑
S,T,U

f̂S f̂T f̂U E
x,y

[χS(x)χS(y)χT (x)χU (y)]

=
∑
S,T,U

f̂S f̂T f̂UE
x
[χS(x)χT (x)]E

y
[χS(y)χU (y)]

(a)
=

∑
S

f̂3S ≤ f̂max

∑
S

f̂2S = f̂max

Here f̂max is the highest fourier coefficient of f and (a) follows from the fact that E
x
[χS(x)χT (x)] is

non-zero only when S = T and E
y
[χS(y)χU (y)] is non-zero only when S = U .

3

3 Proof sketch of H̊astad’s PCP

We will look at 2CSPW instances with m constraints and n variables, satisfying the projection property.
A proof will be an assignment to the variables from the alphabet [W]. We need a verifier VH that
satisfies the requirements of the theorem by reading very few bits of the proof. As with the proof of the
main PCP theorem, we need to encode the proof in a certain way such that it is possible to achieve good
soundness even by reading only 3 proof bits. To this end, we will use a coding method called long code.
An assignment to the i-the entry of the proof π(i) = w is encoded by the function f : {−1,+1}W → [W]
such that f(x1, . . . , xW) = xw. In other words f = χ{w}, the corresponding codeword being the truth
table of the function that has 2W entries. Such functions are also called dictator functions. Note that
the set of functions has size only W (and thus requires only logW bits for representation) but we are
representing it with a codeword of length 2W .

In the case of a correct proof of φ where π(i) = w , the verifier VH will thus expect the codeword
corresponding to the truth table of χ{w}. In other words, it will expect a function f such that the
fourier coefficient corresponding to χ{w} i.e. f̂{w} is significant. The decoding of long codes is done in
a manner similar to Walsh-Hadamard codes. Recall that the decoding in WH codes was done through
a randomized linearity test. However, to achieve good soundness using only three proof bits it will be
necessary to introduce noise and slightly change the test. This will decrease the completeness guarantee
from 1, but not by much.

More concretely, let γ be a small constant in (0, 1). Let z ∈ {−1,+1}W be a random vector where
the i-th coordinate is chosen independently as

zi =

{
+1 with probability 1− γ
−1 with probability γ

The verifier selects z according to the distribution above and x, y uniformly at random from {−1,+1}W
and accepts iff f(x)f(y) = f(xyz). Intuitively speaking, the introduction of noise affects a function f of
the correct form (i.e. χ{w}) differently from a function of the form χS where |S| is large. This is because
E
z
(χS(z)) =

∏
i∈S E[zi] = (1 − 2γ)|S|. Thus the noise has the effect of depressing contribution from f̂S

for large S, allowing us to conclude that the small S’s must contribute a lot.
Before specifying the verifier in more detail, we will introduce a slight restriction on the encoding

functions. Notice that the dictator functions are odd i.e. for all v ∈ {−1,+1}W , f(−v) = −f(v). In
PCP parlance they are called bifolded functions. Thus VH will also assume that the encodings are that
of bifolded functions. This makes sure that the function corresponding to χ∅ is not a codeword. Also,
for a constraint φr(i, j) let h : [W] → [W] be the function describing φr. Let h−1(u) denote the set
{w ∈ W : h(w) = u}. For y ∈ {−1,+1}W define H−1(y) to be a string in {−1,+1}W such that for
every w ∈ [W], the w-th bit of H−1(y) is yh(w). We are in a position to define H̊astad’s verifier VH .

1. Pick a random constraint φr(i, j) in the 2CSPW instance.

2. Let f and g be the functions in the proof for the two variables in φr represented by the projection
function h.

3. Pick x, y ∈ {−1,+1}W uniformly at random.

4. Select the noise vector z ∈ {−1,+1}W by choosing each zi independently to be +1 with probability
1− γ and −1 with probability γ.

5. Test whether f(x)g(y) = f(H−1(y)xz).

Out of n2W−1, only three bits are accessed in the proof, and yet we have the following remarkable
theorem!

4

Theorem 6 If the 2CSPW instance φ is satisfiable, then there is a proof that VH accepts with probability
1 − γ. On the other hand, if val(φ) ≤ ε then VH accepts no proof with probability greater than 1

2 + δ,

where δ =
√

ε
γ .

For the completeness part, if φ is satisfiable we will show that VH accepts a long code encoding of a
satisfying assignment with probability 1−γ. If f = χ{w} and g = χ{u} are the long codes of two integers
w, u which satisfy h(w) = u, then for x, y ∈ {−1,+1}W

f(x)g(y) = xwyu

and
f(H−1(y)xz) = H−1(y)wxwzw = yh(w)xwzw = yuxwzw

Thus f(x)g(y) = f(H−1(y)xz) whenever zw = 1, which happens with probability 1 − γ, which is thus
the completeness guarantee. We will not prove the soundness part here but give the main claims that
lead to the proof. The key insight is that if (f, g, h) is accepted by VH with probability significantly
more than 1

2 , then f, g must be correlated. We have the following definition.

h2(S) = {u ∈ [W] : |h−1(u) ∩ S| is odd}

The following lemma holds which implies the soundness part of the theorem.

Lemma 7 The probability of acceptance of VH is given by

E
f,g,h

[
1 +

∑
S⊆[W] f̂

2
S ĝh2(S)(1− 2γ)|S|

2

]

where the expectation probability is over the randomly picked constraints f, g, h. Further, if this probability
is greater than 1

2 + δ, then

E
f,g,h

 ∑
S⊆[W]

f̂2S ĝ
2
h2(S)

|S|

 ≥ γδ2
Finally, given a proof π̃, we give a randomized strategy to get an assignment π of the variables in

φ such that the probability that a constraint is satisfied is at least γδ2. We can think of π̃ providing a
fi : {−1,+1}W → {−1,+1} for each variable i ∈ [n]. The algorithm is as follows.

1. For variable f = fi, the square of the fourier coefficients f̂S for S ⊆ [W] defines a distribution
because

∑
S f̂

2
S = 1. Pick S with probability f̂2S .

2. Pick random w ∈ S and assign π[i] = w.

With the above assignment, it can be show that the probability that a randomly picked constraint
(f, g, h) is satisfied is no less than ∑

S⊆[W]

f̂2S ĝ
2
h2(S)

|S|
≥ γδ2.

Indeed, the probability that we sample the label for f from a set S and the label for g from a set T such
that T = h2(S) is

∑
S⊆[W] f̂

2
S ĝ

2
h2(S)

; and after picking v ∈ h2(S), with chance at least 1/|S| we pick a
u ∈ S such that h(u) = v.

5

