
Approximation Algorithms and Hardness of Approximation May 14, 2013

Lecture 22

Lecturer: Alantha Newman Scribes: Christos Kalaitzis

1 The Unique Games Conjecture

The topic of our next lectures will be the Unique Games Conjecture. This conjecture implies that certain
central problems are NP-hard to approximate within bounds close to the best known factors for these
problems. For example, it would imply that the current best known factors for the Max-Cut and Vertex
Cover problems are optimal. Thus, although the question is not yet resolved, and there is no clear
consensus among the research community regarding its veracity, it is still quite instructive to examine
it. We will begin by describing the core problem that is used in the reductions:

Definition 1 An instance L = (G((V,W), E), [M], {πvu}) of the Unique Label Cover problem (ULC)
is a bipartite graph G with vertex set (V,W) and edges E. The set [M] is a set of M labels. For each
edge (v, u) ∈ V ×W , there is a permutation {πvu : [M] → [M]}. Our objective is to find an assignment
ℓ : V ∪W → [M] of labels such that we maximize the number of edges which are satisfied; an edge (u, v)
is satisfied if ℓ(u) = πvu(ℓ(v)).

Specifically, the decision problem we will study is the following:

Definition 2 (GAP-ULC) For some δ > 0 and a given ULC instance L, ULC(δ) is the decision
problem of distinguishing between the following two cases:

(i) There is a labeling ℓ under which at least (1 − δ)|E| edges are satisfied (OPT (L) ≥ (1− δ)|E|).

(ii) For any labeling l, at most δ|E| edges are satisfied (OPT (L) < δ|E|).

The Unique Games Conjecture is essentially that this decision problem is NP-hard.

Conjecture 3 (Unique Games Conjecture (UGC)) For any δ > 0, there is an M such that it is
NP-hard to decide ULC(δ) on instances with label set of size M .

From an algorithmic perspective, it is easier to think of a restricted problem that is simpler to
describe than Unique Label Cover in its most general form. Given a set of m linear equations of the
form xi − xj ≡ cij (mod q), the problem of Max-2-Lin-q is defined as finding the assignment to the
variables xi ∈ [0, q − 1] that maximizes the number of satisfied constraints. One of the implications of
the UGC is the following theorem of [?]:

Theorem 4 The Unique Games Conjecture implies that for every δ > 0 and for all sufficiently large q,
it is NP-hard to distinguish between the following instances of Max-2-Lin-q:

(i) There is an assignment to the variables that satisfies at least a 1− δ fraction of the constraints.

(ii) Any assignment of variables satisfies at most a 1

q
δ

2−δ

fraction of the constraints.

It is easy to achieve a 1
q
-approximation algorithm for this problem. Assigning each variable a value

uniformly at random from [q] will satisfy each constraint with probability 1
q
. However, Theorem ??

shows that we need to beat this bound. We we note that Max-Cut is a special case of Max-2-Lin-q
where q = 2 and for every edge (i, j) in the graph we have the constraint xi − xj ≡ 1 (mod 2). In this
special case, the variables take values in {0, 1}. Thus, the constraint is satisfied (i.e. the edge is cut)
iff the two variables corresponding to an edge have different values (i.e. the corresponding vertices are
assigned to different sides of the cut).

1

2 Unique Games Hardness of Max-Cut

We will now exhibit the connection between the Unique Games Conjecture and the inapproximability of
Max-Cut. Specifically, we will show that, assuming the UGC, it is NP-hard to approximate Max-Cut to
within a factor larger than αGW , the factor given by the Goemans-Williamson algorithm. Recall that
αGW had the following value:

αGW = min
0≤θ≤π

2

π

θ

1− cos θ
> 0.878.

In order to do this, we will prove the following theorem.

Theorem 5 For every ρ ∈ (−1, 0) and any ǫ > 0, there is some δ > 0 such that there is a PCP for
ULC(δ) in which the verifier reads two bits of the proof and accepts if they are unequal and which the
following holds:

• If L ∈ULC(δ), the verifier accepts with probability at least c ≥ 1−ρ
2 − ǫ.

• If L /∈ULC(δ), the verifier accepts with probability at most s ≤ 1
π
arccosρ+ ǫ.

Assuming the UGC, Theorem ?? implies that it is NP-hard to approximate Max-Cut within a factor
better than αGW . Why is this the case? For an instance L of ULC(δ), consider the PCP given by the
theorem. Let G be a graph that has the bits of the proof as vertices. Put an edge between two vertices
if there is a non-zero probability of begin sampled by the verifier. All edges have unit weight. A proof,
which is an assignment of {−1, 1} to the bits, corresponds to a cut in G, and

Pr[Verifier accepts] =
Number of edges crossing cut

Total number of edges
.

Assuming UGC, this is a gap-introducing reduction for Max-Cut with a gap of

arccos ρ
π

+ ǫ
1−ρ
2 − ǫ

> αGW.

This result is very surprising, since it tells us that the best known algorithm for Max-Cut is the best we
can achieve if we assume the UGC. However, later on Prasad Raghavendra showed a connection between
the UGC and the integrality gap of a certain form of SDP relaxation. Since the SDP relaxation used
in the Goemans-Williamson algorithm has an integrality gap of αGW , this result provides an alternate
proof of the fact that Max-Cut is hard to approximate to within better than αGW assuming the UGC.

2.1 Designing a 2-Query Long Code Test

In order to construct the actual PCP verifier, we need to design a test that distinguishes between
functions that are “dictators” and functions that are far from being dictators. We say a function is a
dictator if it corresponds to an actual labeling. In this case, we want to design a 2-query test such that
a long code encoding of such a function will pass with probability lower bounded by the completeness
(in the satisfiable case (i)). In the case that there does not exist a good assignment (case (ii)), it is
possible that a function that is far from a dictator could still pass the test. Thus, we need to use the
test to determine if a function is “far” from a dictator function.

Let us consider the following candidate test that checks if a function f : {−1, 1}n → {−1, 1} is a long
code.

1. Pick x ∈ {−1, 1}m uniformly at random.

2. Set y = −x.

2

3. Accept if f(x) 6= f(y).

If f is a dictator, then this test will always pass. We therefore have completeness 1. However, the
soundness is problematic. There are functions that are clearly not dictators that will also pass this test:
(Recall that χS(x) =

∏

i∈S

xi.)

• If f(x) = χS(x), where |S| is odd.

• If f is the majority function: f(x) = sgn
m
∑

i=1

xi and m is odd.

A modified way to perform this test is the following procedure, which we will call the Long Code Test:

1. Pick x ∈ {−1, 1}m uniformly at random.

2. Pick µ as follows: for each i ∈ [m], independently set µi to be 1 with probability 1+ρ
2 , and −1 with

probability 1−ρ
2 .

3. Set y ∈ {−1, 1}m such that yi = µixi.

4. Accept iff f(x) 6= f(y).

2.2 Completeness and Soundness of the Long Code Test

Let us now analyze the completess and soundness of this test.

Completeness: If f(x) = xi for some i (i.e. f is a dictator function), then the Long Code test accepts
if f(x) 6= f(y), which occurs iff xi 6= µixi, or equivalently if µi = −1. By the construction of µ, this
happens with probability 1−ρ

2 .

Soundness: If f is not a dictator function, then the probability that it passes the test is:

Pr
x,µ

[f(x) 6= f(y)] = Pr
x,µ

[f(x) 6= f(µx)]

= E
x,µ

[
1− f(x)f(µx)

2
]

=
1

2
−

1

2
E
x,µ

[f(x)f(µx)].

We want to show that when f is far from a dictator, this quantity is small, so that the test will pass
with low probability. The quantity is related to the notion of stability of the function, which we will
show (by the end of the section) is small for functions that are far from dictators.

2.2.1 Stability of Non-Dictator Functions

We define the stability of a function f as follows:

Definition 6 The stability of a function f , denoted by Stabρ(f), is Ex,µ[f(x)f(µx)].

We will also use the following fact relating the stability of a function with its Fourier coefficients.

Fact 7 For a function f , Stabρ(f) =
∑

S⊆[m]

f̂2(S)ρ|S|.

3

Notice that the stability of a dictator function is exactly ρ (since its output only depends on one
input), and, as previously noted, a dictator function therefore passes the test with probability 1−ρ

2 . Let
us now consider some other functions that are not dictators or are “far” from dictators and see what
stability these functions have. Note that ρ ∈ (−1, 0) and therefore µi = −1 with probability at least
half. Thus, when a function is far from a dictator, ideally it is the case that the stability is close to zero.
Indeed, for a linear function χS , its stability goes to zero as |S| goes to infinity, since a lot of weight is
put on the Fourier coefficients corresponding to sets with large size. Its probability of passing our test
therefore tends to 1

2 , as desired for a function far from a dictator.
Another important non-dictator function to consider (and, as we will see, one of the most important

ones) is the majority function. For this function, the probability of acceptance approaches arccos ρ
π

, as
m approaches infinity. Why should this be the case? Recall that in the Goemans-Williamson rounding
algorithm for Max-Cut, we saw that the probability of cutting an edge was proportional to the angle
between the two unit vectors corresponding to the vertices of that edge. In that algorithm, we had two
given vectors, and we checked to see if they fell on either side of randomly chosen hyperplane. In our
Long Code test, the expected dot product between between vectors x and y is ρ. We can also think
of this test as checking if the two vectors x and y fall on either side of the hyperplane denoted by the
vector of all 1’s. In this scenario, however, the hyperplane is fixed and the vector y is chosen at random
but with the angle between x and y set to be arccosρ in expectation.

Our goal is now to show that if a function f passes the test with probability at least arccos ρ
π

+ ǫ,
for some ǫ > 0, then f must be similar to a dictator function. That is, one of its variables has a large
influence on the outcome of f .

2.2.2 Influential Variables

For a function f , the influence of a variable xi is defined to be:

Infi(f) = Pr
x∈{−1,1}m

[f(x) 6= f(x1, x2, · · · − xi, xi+1, . . . , xn)].

In other words, if we negate the ith coordinate of input x, what is the probability that the value of the
function changes? The influence of a variable also has the following definition.

Fact 8 For a function f , Infi(f) =
∑

S:i∈S

f̂(S)2.

Let us look at the influence of variables in some simple functions:

• Infi(xj) =

{

0 if i 6= j

1 if i = j

• Infi(χS(x))=

{

0 if i ∈ S

1 if i /∈ S

• Infi(parity)=1

• Infi(majority)= Θ(1√
m
).

We will also need the notion of low-degree influence, which is denoted by Inf≤d
i (f).

Definition 9 Inf≤d
i (f) =

∑

S:i∈S,|S|≤d

f̂(S)2.

Our goal now becomes to show that a function has stability upper bounded by that of the majority,
or the function has high low-defree influence, and can therefore be decoded, i.e. it is close to a dictator.
We state the following theorem that, roughly speaking, says that the majority function is most stable

4

among all functions where all the coordinates have low influence. Note that stability ranges from (−1, 0),
so what we actually mean when we say that “majority is stablest” is that it has the highest probability
of passing our Long Code test (among all functions where all the coordinates have low influence).

Theorem 10 (Generalized Majority is Stablest) For any −1 < ρ < 0 and ǫ > 0, there exists τ > 0

and d ∈ N, such that if some function f : {−1, 1}m → {−1, 1} has Inf≤d
i < τ for all i ∈ [m], then

1

2
−

1

2
Stabρ(f) <

arccosρ

π
+ ǫ.

3 Reduction from Unique Label Cover to Max-Cut

We are now ready for the reduction from ULC. Given an instance of GAP-ULC, L = (G((V,W), E), [M], {πvu}),
we describe the test the PCP verifier will perform. Here is our first attempt:

• Pick an edge (v, w) in G uniformly at random.

– Let fv, fw be the supposed long codes of the vertices labels.

• Let π denote the permutation corresponding to edge (v, w).

• Pick x ∈ {−1, 1}m uniformly at random, and pick µ ∈ {−1, 1}m according to 1−ρ
2 -biased distribu-

tion.

• Accept iff fv(x) 6= fw(y ◦ π), where y ∈ {−1, 1}m and yi = µixi.

– y ◦ π is the vector (yπ(1), yπ(2), . . . , yπ(m)).

This test is a reasonable attempt, but it is actually flawed. This is because setting fv to return 1
and fw to return −1 will always cause this test to accept, since G is bipartite. This just demonstrates
the care that we must use when using our 2-query test in a reduction. Finally, let us describe a valid
test that the PCP verifier can perform:

• Pick a vertex v ∈ V uniformly at random.

• Pick two random edges (v, w) and (v, w′).

• Let π and π′ be the permutations corresponding to edges (v, w) and (v, w′) respectively.

• Pick x ∈ {−1, 1}m uniformly at random and µ ∈ {−1, 1}m according to a 1−ρ
2 -biased distribution

and set y = µx.

• Accept iff f(x ◦ π) 6= f(y ◦ π′).

3.1 Completeness

We will now analyze this verifier. Suppose that for the given Unique Label Cover instance L, there is a
labeling σ : (V ∪W) → [M] that satisfies at least a 1− δ-fraction of the constraints. Suppose that fw is
the actual long code that we expect for σ(w), i.e. σ(w) is the σ(w)th dictator function.

Since both edges were chosen uniformly at random, the probability that both edges (v, w) and (v, w′)
are satisfied by the labeling σ is at least 1 − 2δ. In this case, what is the probability that the test
succeeds? Note that fw(x ◦ π) = (x ◦ π)σ(w) = xπ(σ(w)). Therefore, in this case, since σ satisfies (v, w),
we have:

π(σ(w)) = σ(v).

We also have:
fw′(y ◦ π′) = (y ◦ π′)σ(w′) = yπ′(σ(w′)).

5

Since σ satisfies (v, w′), we know that
π′(σ(w′)) = σ(v).

Recall that the test succeeds iff xσ(v) 6= yσ(v) = (µx)σ(v). Note that this occurs exactly when µσ(v) = −1,

which happens with probability 1−ρ
2 . Thus, the total probability of acceptance is at least (1− 2δ)(1−ρ

2),

which is greater than 1−ρ
2 − ǫ, if ǫ is chosen to be greater than 2δ.

3.2 Soundness

Now we want to prove that if every labeling satisfies at most a δ-fraction of the constraints, then the test
is accepted with probability at most arccos ρ

π
+ ǫ. In order to do this, we will prove the contrapositive:

If a test accepts with probability at least arccos ρ
π

+ ǫ, then there is a labeling that satisfies at least δ|E|
constraints. By Markov’s inequality, we know that there is at least an ǫ

2 -fraction of the vertices (let
us call them “good”) such that, if one of them is picked, then the test passes with probability at least
arccos ρ

π
+ ǫ

2 . Recall that the probability the test passes is:

1

2
−

1

2
E
x,µ

[E
w,w′

[fw(x ◦ π) · fw′(µx ◦ π′)]].

Let gv(x) = E
w∼v

[fw(x ◦ πvw)]. Then, conditioned on the selection of v, the probability the test accepts

is:

1

2
−

1

2
E
x,µ

[gv(x)gv(µx)] =
1

2
−

1

2
Stabρ(gv). (1)

If v is a good vertex, then the above expression (??) is at least:

arccosρ

π
+

ǫ

2
.

Applying the “Majority is Stablest” Theorem (Theorem ??), we see that gv must have at least one
coordinate with large d-degree influence. In other words, there is some j such that:

Inf≤d
j (gv) =

∑

S:j∈S,|S|≤d

ĝv(S)
2 > τ.

We will assign to vertex v the label j. Now we will label the neighbors of v. The key idea is a good
fraction of these neighbors, it is the case that for a neighbor w the influence of the function fw has a high
influence in the coordinate π−1

vw . If we choose labels for w from among these high-influence coordinates,
we will have a good chance of satisfying the constraint on the edge (v, w).

We can expand the Fourier coefficients of the function gv (see [?] for details) to obtain:

τ ≤ E
w
[Inf≤d

π−1(j)(fw)].

This implies that at least a τ
2 -fraction of v’s neighbors w have:

Inf≤d

π−1

vw(j)
(f) ≥

τ

2
.

Let Cand(w) = {k ∈ [M] : Inf≤d
k (fw) ≥ τ

2 } be the set of candidate labels for vertex w. We will label
the vertex w with a label chosen uniformly at random from the set Cand(w). Since the total d-degree
influence cannot be more than d, if follows that |Cand(w)| ≤ 2d

τ
. Therefore, the probability of satisfying

the constraint on an edge (v, w) is at least:

ǫ

2

τ

2

1

|Cand(w)|
≥

ǫ

2

τ

2

τ

2d
≥ δ.

Thus, the expected number of edges whose constraints are satisfied is at least δ|E|, where δ is set to be
a function of ǫ and τ .

6

References

[GO05] Venkatesan Guruswami and Ryan O’Donnell. Lecture Notes for CSE 533: The PCP Theorem
and Hardness of Approximation. 2005.

[HCA+10] Prahladh Harsha, Moses Charikar, Matthew Andrews, Sanjeev Arora, Subhash Khot, Dana
Moshkovitz, Lisa Zhang, Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan,
Alexander S. Kulikov, Darakhshan J. Mir, Alantha Newman, Aleksandar Nikolov, David
Pritchard, and Gwen Spencer. Limits of Approximation Algorithms: PCPs and Unique
Games (DIMACS Tutorial Lecture Notes). CoRR, abs/1002.3864, 2010.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for Max-Cut and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357,
2007.

This lecture was mainly based on the following sources: [?, ?] and Chapter 9 from [?].

7

