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1 Previous Lecture

In the previous lecture we saw examples of greedy algorithms that made locally optimal decisions at each
step to arrive at a solution that wasn’t too far from the optimal solution in the end. Specifically for the
case of Set Cover we saw that this strategy leads to the best possible approximation algorithm we could
hope for (unless NP ⊂ DTIME(nlog logn), which is very unlikely). In general, we also noted that greedy
algorithms are usually easy to implement, and fast.

Today we will look at algorithms which can approximate the optimal solution as close as we want
by trading off a sufficient quantity of time. For NP-Hard problems, this is the best we can hope for in
terms of an approximation guarantee.

2 Trading off Time with Accuracy

Since we want to approximate the optimal solution of a maximization problem arbitrarily closely, we
ask for a (1− ε)-approximation algorithm Aε for every choice of ε > 0.

Definition 1 (PTAS) A Polynomial Time Approximation Scheme (usually shortened to PTAS) is a
family of algorithms {Aε}ε>0 such that for every ε > 0, Aε is a (1− ε)-approximation algorithm.

For a minimization problem we adjust the previous definition appropriately. Note that nothing in the
defintion of a PTAS prevents the running time of the algorithm from depending on ε in a non-polynomial
way. In fact, it is possible (and we look at such an example today) that the running time of Aε could be

O(n(1/ε)
(1/ε)

), which is exponential in the error term ε, but still polynomial in n for a fixed ε. A PTAS
whose running time is polynomial in both n and 1/ε is called a Fully Polynomial Time Approximation
Scheme or a FPTAS.

3 0-1 Knapsack

In the knapsack problem we are given a set S := {1, 2, . . . , n} of n items, where each item has a size si
and a profit pi, and a capacity bound B. Our goal is to pack a subset of items whose total size is at
most B such that the total profit from these items is maximized. Since the items are indivisible, this is
called the 0-1 Knapsack problem.

3.1 Greedy Strategy

As a first try, let’s try to formulate a greedy strategy for this problem. A greedy algorithm would try to
maximize “bang for the buck” and always go for the item that maximizes the profit-to-size ratio (among
all items that fit in the remaining capacity). However, such an algorithm performs arbitrarily poorly!

Lemma 2 The greedy algorithm for 0-1 Knapsack has no guarantee

Proof Consider an instance of knapsack with capacity 1 and the following two items: one with profit
ε and size 2ε and the other with profit 1 and size 1. A greedy algorithm would pick the first item whereas
the optimal solution is to pick the second. Since the ratio 2ε

1 is arbitrarily small, we cannot provide an
approximation guarantee for this algorithm.
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3.2 Dynamic Programming

Since our first attempt didn’t quite work out, we will now try to solve the problem exactly using dynamic
programming, and leverage this to build our FPTAS for the 0-1 Knapsack.

Dynamic Programming is a technique that applies to problems that exhibit the “optimal substruc-
ture” property. This means that for such problems, it is possible to extract the optimal solution for an
instance by using only optimal solutions to smaller subproblems of the instance.

3.2.1 First Attempt

Consider some particular order of the items in S. To see the optimal substructure in case of knapsack,
we define M [i, b] as the maximum profit that we can achieve using only items from the set {1, 2, . . . , i}
and using capacity at most b. The solution of the base cases for this dynamic program M [i, 0] = 0 ∀i =
0, . . . , n and M [0, b] = 0 ∀b = 1, 2, . . . follow from the fact that we cannot achieve a non-zero profit when
we are constrained to zero capacity or when we cannot use any items. To compute M [i + 1, b] we will
use the recurrence

M [i+ 1, b] =

{
max(M [i, b− si+1] + pi+1,M [i, b]) si+1 ≤ b
M [i, b] else

.

The recurrence is based on the following idea: the optimal solution for M [i+1, b] that maximizes the
profit while only using items from {1, . . . , i+1} and using capacity at most b either uses the i+1-th item
or it doesn’t. In either case, we reduce the problem of determining M [i + 1, b] to one or more smaller
subproblems.

The above dynamic programming formulation has approximately nB subproblems each of which we
can solve in constant time using the recurrence relation combined with a bottom-up evaluation. So the
total running time of the above dynamic program would be O(nB). However, this is not polynomial
in the length of the input since for a given 0-1 Knapsack instance that has a capacity bound B we can
describe this using only at most dlogBe bits (using an efficient encoding like binary encoding)1.

Let’s think about how we can use this pseudo-polynomial algorithm to build a FPTAS. Since, in
general B could be very large (say, of the same order as 2n) we would like to argue that we can “scale”
the instance down by dividing the item sizes and B, solve the smaller problem exactly and then scale
the problem back again. However, this method could encounter some problems because in the process
of scaling up we could end up producing an infeasible solution due to rounding errors since the capacity
bound B is a hard constraint.

3.2.2 Scaling Friendly Dynamic Program

So we turn the dynamic programming solution around and ask the question “what’s the least capacity
that I need in order to achieve a profit p using only items in {1, . . . , i}”. This leads to an alternate
dynamic program for the problem, but one which is more suitable to scaling. Let us define A[i, p] as the
answer to our question (and we define it to be ∞ whenever this is not possible). As before we find that
the base cases A[0, p] = ∞ if p > 0 and A[i, 0] = 0 ∀i = 0, 1, . . . , n since we cannot achieve profit p > 0
with 0 items and we can achieve zero profit using zero capacity. Again, we branch into two cases based
on the fact that the optimal solution to A[i+ 1, p] either uses the i+ 1-th item or it doesn’t. This leads
to the following recurrence

A[i+ 1, p] =

{
max(A[i, p− pi+1] + si+1, A[i, p]) pi+1 ≤ p
A[i, b] else

.

1In passing, we mention that algorithms whose running times become polynomial when the input is encoded in unary
are called pseudo-polynomial algorithms. So we have just described a pseudo-polynomial algorithm for 0-1 Knapsack
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Item 1 2 3 4

Size 1 2 4 1
Profit 1 2 4 2

Table 1: 0-1 Knapsack Instance with capacity B = 5

i, p 0 1 2 3 4 5 6 7 8 9

0 0
1 0 1
2 0 1 2 3
3 0 1 2 3 4 5 6 7
4 0 1 1 2 3 4 5 6 7 8

Table 2: Table displaying A[i, p] (missing values are ∞)

Once we have computed A[i, p] for all i = 0, 1, . . . , n and p = 0, 1, . . . ,
∑n
i=1 pi we can then find the

optimal value by looking at the column of the table of values A[i, p] with the highest profit such that
there is still an entry that is no more than B.

For example we describe an instance of a 0-1 Knapsack problem in Table 3.2.2 and the corresponding
values of A[i, p] in Table 3.2.2. To see how table is computed let’s look at a particular cell, say, A[2, 3].
Since Item 2 has profit of 2 ≤ 3 we look at the two possibilities: i) A[1, 1]+2 and ii) A[1, 3] corresponding
to the two choices of either picking or not picking Item 2. Since A[1, 3] is ∞, the minimum of the two
is A[1, 1] + 2 = 3 which is the value of A[2, 3]. Similarly we compute the rest of the values.

The optimum for this instance is 6 since Table 3.2.2 tells us that it is possible to pack items totalling
a profit of 6 within the capacity bound of B = 5.

In this case, we had to solve about n
∑n
i=1 pi subproblems each of which takes constant time to solve

in a bottom-up fashion. Thus the running time of this algorithm is O(n
∑n
i=1 pi) = O(n2pmax), where

pmax is the maximum profit over all items. Since we again have a pseudo-polynomial algorithm for the
same problem it seems we have achieved little, but that’s not true!

3.3 FPTAS for 0-1 Knapsack

Let’s see how this formulation helps us. If in our instance, pmax is “small” (∼ poly(n)) then we simply
run the dynamic program to obtain the exact solution. If exactly one item has profit ∼ 2n and others
O(n) then it is intuitively clear that we need not care much about items since 2n

2n+(n−1)n ≈ 1. The tells

us that we can scale our instance down by dividing all the profits (since we care only about the higher
order bits as we saw) and then solve this instance exactly to obtain a feasible solution that is not too bad.
We can then scale this up without having to worry about losing feasibility since profit maximiziation is
a soft constraint.

The algorithm that we are going to describe naturally follows this intuition of looking only at the
higher order bits.

Algorithm 1 “Round Input”

Require: ε > 0
1: Set K := pmaxε

n
2: Round profits by setting p′i = bpiK c
3: Run the “scaling friendly” dynamic program with rounded profits to obtain a set of items S
4: return S

Lemma 3 “Round Input” returns a feasible solution with profit at least (1− ε)OPT
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Proof Let S be the subset of items returned by Algorithm 1. We denote by Profit and Profit′ the profit
functions defined on subsets of items with the original profits pi and the rounded profits p′i respectively.
Let the optimal solution be the set O ⊂ {1, . . . , n}, so that OPT = Profit(O).

We now have the following chain of inequalities

Profit(S) ≥ KProfit′(S) (due to scaling up)

≥ KProfit′(O) (since S is optimal for the rounded instance)

= K
∑
i∈O

p′i

=
∑
i∈O

Kb pi
K
c

≥
∑
i∈O

pi − |O|K (accounting for rounding)

= OPT− ε · |O|
n

pmax

OPT
OPT (*)

≥ (1− ε)OPT,

where the (*) follows from the fact that |O| ≤ n and OPT ≥ pmax since we can at least achieve pmax in
any instance.

In Algorithm 1, step 2 takes O(n) time while step 4 takes O(n2p′max) time. Since p′max ≤
pmax

K = n
ε ,

we have that the running time is O(n3 1
ε ) which has a polynomial dependence on both n and 1

ε . Together
with Lemma 3 this shows that Algorithm 1 is an FPTAS for 0-1 Knapsack.

4 Bin Packing

In the bin packing problem we are given a set {s1, . . . , sn} of n items 1 ≥ s1 ≥ s2 . . . sn ≥ 0 and our goal
is to pack all the items into the least number of unit capacity bins. That is, in each bin the sum of the
item sizes of items assigned to the bin should not exceed one.

There is a simple way to see that this problem cannot be easy using a reduction from Subset Sum
which is a problem we know to be NP-Hard. We state the hardness of approximating bin packing as a
theorem.

Theorem 4 A ( 3
2 − δ)-approximation algorithm for Bin Packing, where δ > 0, implies P = NP .

Proof In Subset Sum we are given a set of integers {a1, . . . , an} and are asked to decide whether there
exists as subset A of {1, . . . , n} such that

∑
i∈A ai =

∑
i∈{1,...,n}\A ai. Suppose we had an oracle that is

able to decide for any given instance of bin packing whether we required i) two bins or ii) three or more
bins, then we can show that we can use it to solve Subset Sum. Given a Subset Sum instance I on the
set {a1, . . . , an}, create an instance J of bin packing {s1, . . . , sn} by normalizing the ai’s such that their
sum is 2 (i.e., si := ai

(
∑
i ai)/2

). By construction, the solution to the Subset Sum instance I is “YES” if

and only if the optimal solution to the bin packing instance J is exactly 2. The theorem now follows
from the fact that a (3

2 − δ)-approximation to bin packing is exactly such an oracle.

So we see that it is hopeless to aim for a PTAS for bin packing. However, in the hardness of
approximation proof from Theorem 4 we saw that the hardness lies really in deciding whether for a bin
packing instance two bins suffice. From this, we might expect that bin packing is really only hard for
small values of OPT, and we will see that this is indeed the case. For instance, there exists a bin packing
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algorithm that produces a solution of value no greater than 11
9 OPT(I) + 4 for any instance I (despite

the fact that 11
9 < 3

2 )2.
Keeping this in mind, we will attempt to construct a PTAS for bin packing for “large” values of OPT,

and we will call this an Asymptotic PTAS. Since we are looking at bin packing, we make the definition
for a minimization problem.

Definition 5 (APTAS) An Asymptotic PTAS (APTAS) is a family of algorithms {Aε}ε>0 such that
for some constant c > 0 and for every ε > 0, Aε returns a solution of value no greater than (1 +
ε)OPT(I) + c.

As we saw earlier, we will try to use an exact algorithm for “bounded” instances to construct the
APTAS for the general case. We will now see that if the number of different items and the size of the
smallest item are bounded (from above and below respectively) by constants, then we have an exact
polynomial time algorithm.

Theorem 6 Suppose we have a bin packing instance I such that

• at most L items fit in a bin,

• there are at most M different item sizes.

Then there exists an exact algorithm for bin packing with a running time of O(nM
L

)

Proof The proof is simply to exhibit the brute-force algorithm that performs an exhaustive search
over all possible configurations (ways of packing a unit capacity bin), and showing that there aren’t too
many such configurations that we need to consider. Let the number of feasible configurations be C.
Since there are at most L different items that can fit in a bin, and each is of at most M different sizes,
C ≤ ML. Let Xi denote the number of bins packed using configuration i (for i = 1, . . . , C) in a valid
solution. Since we need at most n bins in the worst case, the total number of solutions that we need to
consider is upper bounded by the total number of non-negative integer solutions to the equation

X1 +X2 + · · ·+XC ≤ n, (1)

which is
(
n+C
n

)
≤
(
n+ML

n

)
= O(nM

L

). So our algorithm is to enumerate all the non-negative integer
solutions of equation (1) and for each solution look at the packing described by it and take the minimum
over all feasible packings.

Having showed the previous lemma, it is now natural to try and reduce any given instance to one
that doesn’t have very small items and also doesn’t have many different item sizes. Suppose we started
with an instance I = {s1, . . . , sn} and reduce it to an instance IR for some ε > 0 such that

• IR has all si ≥ ε/2 so that L = b 2ε c (ignore small items)

• IR has at most M = d 4
ε2 e different item sizes (grouping)

then we would like to relate OPT(IR) to OPT(I). We do this in two steps, showing that each of the
above operations (ignoring small items and grouping) does not affect the solution too much. In what
follows, we use SIZE(I) to denote the sum

∑
i si, which is a simple lower bound on OPT(I).

2Perhaps even more surprising is the fact that nothing we know so far contradicts the possibility of the existence of an
algorithm for bin packing with a guarantee of OPT(I) + 1!
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4.1 Ignoring Small Items

Suppose we divide the set of items I into “small” and “large” items so that SMALL := {si|si < ε/2} and
LARGE := {si|si ≥ ε/2}. Now, we show that ignoring small items is justified in the following lemma.

Lemma 7 Any packing of LARGE into l bins can be extended to a packing of I using at most max{l, (1+
ε)OPT + 1} bins.

Proof We start with the packing of items in LARGE into l bins. We now take all the items in SMALL
and add them using First Fit creating extra bins when necessary. If FF did not use any extra bins then
we only use l bins. If FF does use extra bins, then suppose after running FF, we have used u+ 1 bins.
We know that u of the bins must be at least (1 − ε/2) full, otherwise we would not have opened bin
u+ 1. So, SIZE(I) ≥ (1− ε/2)u =⇒ u ≤ (1 + ε)SIZE(I). Since OPT(I) is at least SIZE(I), we have that
u+ 1 ≤ (1 + ε)OPT + 1.

4.2 Grouping

We now describe the method we are going to use to reduce the number of different item sizes. A grouping
of size k on an instance I produces an instance I ′ with at most n

k different item sizes. The operation is
as follows:

1. Sort the items in the order of decreasing size and define each continguous set of k items to belong
to a particular group so that every group except possibly the last has exactly k items.

s1 ≥ s2 ≥ · · · ≥ sk︸ ︷︷ ︸
G1

≥ sk+1 ≥ · · · ≥ s2k︸ ︷︷ ︸
G2

≥ · · · ≥ · · · ≥ · · · ≥ sn︸ ︷︷ ︸
Gdn

k
e

2. Discard the first group G1.

3. “Round up” each item to be the size of the largest item in its group.

The following lemma tells us how to use a packing of I ′ to create a packing for I using not too many
more items in the process.

Lemma 8 If I ′ is an instance obtained from I by performing a grouping operation of size k, then

OPT(I ′) ≤ OPT(I) ≤ OPT(I ′) + k.

Further, a packing of I ′ in B bins can be used to create a packing of I using no more than B + k bins.

Proof Suppose we have the optimal packing of I using OPT(I) bins. Let the instance I ′ be represented
by the items {s′k+1, s

′
k+2, . . . , s

′
n}. We can use the packing of instance I to create a packing for I ′ by

placing item s′k+1′ in place of s1, s′k+2 in place of s2, and so on. This shows that OPT(I ′) ≤ OPT(I).
Since each item of I ′ is at least as large as the corresponding item in I, we can use a packing of I ′

to pack all the items in I except those in G1. We then pack the items in G1 using no more than k bins
showing the second inequality. Since this argument is constructive, we have the second claim.

4.3 An APTAS for Bin Packing

We now combine the results from Lemmas 7 and 8 giving the following algorithm for bin packing.
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Algorithm 2 “APTAS for Bin Packing”

Require: n items of sizes s1, . . . , sn and ε > 0
1: Set SMALL := {si|si < ε/2} and LARGE := {si|si ≥ ε/2}
2: Set k := bεSIZE(LARGE)c
3: Perform grouping of size k on LARGE to get an instance IR
4: Solve IR exactly using the algorithm from Theorem 6 with parameters M = 4

ε2 , L = 2
ε

5: Using the packing for IR produce a packing for LARGE as detailed in Lemma 8
6: Pack all the remaining items from SMALL using First Fit
7: return the final packing

From the grouping operation on the items in LARGE in step 3, we know that there are no more than
M = nLARGE

k different item sizes. By the setting of k in step 2, and the fact that SIZE(LARGE) ≥ εnLARGE

2
it follows that M ≤ 4

ε2 . This explains the correctness of step 4. Call the value of solution returned by
Algorithm 2 on an instance I as ALG(I).

Since we packed the large items first, and then used First Fit for the small items,

ALG(I) = max{l, (1 + ε)OPT(I) + 1}

using Lemma 7 where l is the number of bins that the algorithm uses to pack LARGE. But, using Lemma
8 we know that LARGE can be packed using OPT(LARGE) + k bins using a grouping operation of size k.
By our choice of k, we have OPT(LARGE) + k ≤ OPT(LARGE) + εSIZE(LARGE) ≤ (1 + ε)OPT(LARGE).
Thus, we have:

ALG(I) ≤ max{(1 + ε)OPT(LARGE), (1 + ε)OPT(I) + 1} ≤ (1 + ε)OPT(I) + 1.

The running time of Algorithm 2 is dominated by step 4 where we solve the reduced instance IR by
brute force using parameters M and L. From Theorem 6 it follows that the running time of this APTAS

for bin packing is O(nM
L

) = O(n
4
ε2

2
ε
).
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