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Abstract learned in timen %" (the main result in [11] is much more
general, giving a bound of® 7* for learning juntas).
We study the following question: Technically, the study of(k) is equivalent to the study
of 0/1 solutions of a system of Diophantine equations in-
What is the smallest such that every symmet- volving binomial coefficients. As a first step, we simplify
ric boolean function ork variables (which is not these Diophantine equations by moving to a representation
a constant or a parity function), has a non-zero of boolean functions, which is equivalent to their Fourier
Fourier coefficient of order at leagtand at most representation, but seems much simpler for the application

t? of number theoretic tools. Once this is done, we reduce

W lude th rant funct ; hich there i hthese equations modulo carefully chosen prime numbers to
€ exclude the constant functions for which Ihere 1S N0 SUChy et 5 simpler system of equations which we can analyze. Fi-

Eanﬁ the pﬁlr'ty fu?mct_:%ns for. whmhhss .to bef'hl.‘e”(k) . nally, we combine the information about the equations over
e the smallest such The main contribution of this paper is the finite fields in a combinatorial manner to deduce the na-

a proof of the following self similar nature of this question: ture of the0,/1 solutions.

If 7(I) < s, then for anye > 0 and fork > ko (I, €),
7(k) < (;jr'll +e) k

Coupling this result with a computer based search which
establishes (30) = 2, one obtains that for large enough Problem statement
(k) < 3k/31.

The motivation for our work is to understand the com-  The study of the Fourier representation of boolean func-
plexity of learning symmetric juntas./Ajunta is a boolean  tions has proved to be extremely useful in computational
function ofrn variables that depends only on an unknown complexity and learning theory. In this paper we focus on
subset ofk variables. If f is symmetric in the variables the Fourier spectrum of symmetric boolean functions and
it depends on, it is called a symmetfigunta. Our results we study the following question:
imply an algorithm to learn the class of symmetrijuntas,

in the uniform PAC learning model, in time approximately What is the smallest such that every symmet-

% This improves on a result of Mossel, O’'Donnell and ric boolean function ok variables (which is not
n31l. , . .
b a constant or a parity function), has a non-zero

Servedio in [11], who show that symmettiquntas can be Fourier coefficient of order at leastand at most
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1 Introduction




We exclude the two constant functions, for which there is no significantly easier than the general case. The bound before

sucht, and the two parity functions, for whicthas to bek.
Let 7(k) be the smallest suagh While the above question is

interesting in its own right, there is also an important learn-

ing theory application behind it, which we outline next.
Motivation

The motivation to study-(k) comes from the follow-
ing fundamental problem in computational learning theory:

learning in the presence of irrelevant information. In many kx2k/3+1 b bI Oz,
practical applications (e.g. feature recognition) an observed<"oWnvariabies amongs, . .

function may be a result of very few factors which are hid-
den in a large array of irrelevant information. One formal-
ization of the problem is as follows: We want to learn an
unknown boolean function af variables, which depends
only onk < n variables. Typicallyk is O(logn). Such a
function is referred to as &junta. We are provided with a
set of labeled examplex, f(x)), where thex's are picked
uniformly and independently at random from the domain
{0,1}™. We wish to identify thek relevant variables and
the truth table of the function.

The problem was first posed by Blum [1] and Blum
and Langley [4], and it is considered [2, 11] to be one of
the most important open problems in the theory of uni-
form distribution learning. It has connections with learn-

ing DNF formulas and decision trees of super-constant size,
see [5, 8, 10, 13, 14] for more details. The general case
is believed to be hard and has even been used in the con

struction of a cryptosystem [3]. A trivial algorithm runs in
time roughlyn” by doing an exhaustive search over all pos-

sible sets of relevant variables. Two important classes of

juntas are learnable in polynomial time: parity and mono- o
J poly party 0Juntas. To our knowledge, this is the best known upper

tone functions. Learning parity functions can be reduced t
solving a system of linear equations o&r [7]. Mono-

tone functions have non-zero singleton Fourier coefficients
(see [11]). For the general case, the first significant break-

through was given in [11] - learning with confidente- §

in time n® *poly(log 1/5,2%,n). Note that we allow the
running time to be polynomial ig*, since this is the size
of the truth-table which is output. In the typical setting of
k = O(logn), this becomes polynomial in.

our work wasn?#/3 [11], which is not much better than
the best bound for general juntas (also obtained in [11]).
Our results imply an improved bound for learning symmet-
ric juntas via the Fourier based algorithm.

We believe that the case of symmetric juntas constitutes
a good “challenge problem” towards the goal of learning
general juntas. One motivation for this is a consideration of
the following well-known challenge problem [2] :
Let f(x1,...,2n) MAJORITY (21, ..., z2,/3) D
), where z,...,z, are someun-
., Zn. This subclass has been
identified as a candidate hard to learn class [2]. The cur-
rent bound for learning this subclass of juntasfé?, and
it is asked in [2] if a faster algorithm exists. Note thais
invariant under permutations @f1, ..., 24,3} and under
permutations of zoy, /3, . . ., 1 }, I.€., it is invariant under a
large group of symmetries. This suggests that it is interest-
ing to begin with the case of symmetric juntas.

Our results

Our main result is:

If 7(I) < s, then for anye > 0 and fork > ko(l, €),
(k) < (S“ + e) k

I+1

Coupling this result with a computer based search which
establishes(30) = 2, one obtains that for large enough
7(k) < 3k/31.

Our result implies a bound of?*/3! for the Fourier
based learning algorithm for the class of symmetfric

bound for learning symmetric juntas under the uniform dis-
tribution. Independent of the learning problem, the fact that
symmetric boolean functions have non-zero Fourier coeffi-
cients of relatively small order provides new insight into the
structure of these functions.

Techniques

Fourier based techniques in learning were introduced The study ofr(k) is equivalent to the study df/1 so-

in [9] and have proved to be very successful in several lutions of a system of Diophantine equations involving bi-
problems. One reason for this success is that Fourier co-nomial coefficients. As a first step, we simplify these Dio-
efficients are easy to compute in the uniform distribution phantine equations by moving to a representation which is
learning model. Furthermore, if a Fourier coefficient is non- equivalent to the Fourier representation, but seems much
zero then its entire support is contained in the set of relevantsimpler for the application of number theoretic tools. Once
variables. Hence, it is interesting to ask: what are the sub-this is done, we reduce the equations modulo carefully cho-
classes of juntas for which Fourier based techniques yieldsen prime numbers to get a simpler system of equations
fast learning algorithms? An important and natural subclasswhich we can analyze. Finally, we combine the information
is the class of symmetric juntas. While this subclass con-about the equations over the finite fields in a combinatorial
tains only2*+! functions, the problem is not known to be manner to deduce the nature of thé solutions.



The specific bound dik /31 is then obtained by a com- a function f : {0,1}* — {0,1}, and S C [k], de-
puter search. The following well-known self-similarity fine theFourier coefficientcorresponding t& as f(S) :=
property of Pascal's Triangle plays an important role: If > xefo,1p+ f(x)xs(x). The order of a Fourier coeffi-

m = [p for some integef and some primey, then the
nonzero values obtained by reducing the binomial coeffi-
cients of them-th row of Pascal’s Triangle modula can
be read off directly from théth row of Pascal’s Triangle.

A remark concerning the computer seardn interest-
ing aspect of the proof is the fact that if we can find an
explicit valuel, for which all symmetrid-juntas have non-
zero Fourier coefficients of very small order, then we can
prove that for all largé, k-juntas have non-zero Fourier co-
efficients of relatively small order. To find an explicit value
for [, we did a computer search on all symmetric boolean
functions of up to 30 bits and computed their Fourier coef-

ficients of small order. The search revealed that every sym-

metric function on 30 bits (which is not parity or constant)
has a nonzero Fourier coefficient of ordeor 2. In our
proof we use this fact to obtain the bound3éf/31 for large
enoughk. A search beyon80 bits may yield better bounds.

Related work

cient f(S) is |S|. The Fourier expansion of is: f(x) =
ng[k] f(S)xs(x).

If f is symmetric,f is completely determined by its
value on anyk + 1 vectors of distinct weights, where
the weight of a boolean vector is the number d% in
it. We will use the following vector representation ¢f
v(f) == (fo, f1,---, fx)T. Here f; is the value off on
a vector of weight. Further f has preciselyt + 1 (non-
equivalent) Fourier coefficientsfo, . . ., fx). Heref, is de-
fined asf(S), for someS C [k] with cardinalityt. Since f
is symmetric, this does not depend on the choics.ofhe
following four special symmetric functions dnvariables
will appear often: the two constant functiosand1, the
parity function®, and its complemeng.

2.2 An equivalent formulation as a Diophantine
problem

In this section we give an equivalent condition for the ex-
istence of a non-zero Fourier coefficient of a boolean func-

Previously, the idea of reducing binomial coefficients o ¢, \While we prove the equivalence for all boolean func-

modulo a prime number has been used in [15] to prove gons we use it only for the special case of symmetric func-
lower bounds on the degree of polynomials representingyjons.

symmetric boolean functions. In [15], their problem re- Let f : {0,1}* — {0,1} be a boolean function. For
duces to showing that a certain sum of binomial coefficients 5 yectorx — 7(:171 xks and a setS C [k], let x5 be

is non-zero, which is done by reducing the sum modulo ahe projection ofx on the indices of5. Leto € {0, 1}!5!.

prime number. Our problem involves a collection of sSUMS pefine the following probabilities:

which we have to prove are unequal. For this we need to

consider reductions modulo two different carefully chosen

primes and combine the information obtained by the two

reductions in a combinatorial manner. Unless mentioned, all probabilities are over the uniform
The result of [15] has in fact been used in the proof of distribution. Fort > 1, call a boolean functiorf on &

the previous best?*/? bound for learning symmetric jun-  variablest-null, if for all setsS C [k], with |S| = ¢, and

tas [11]. Using [15], it is shown in [11] that if a symmetric for all o € {0, 1}, the probabilitiegps ,(f) are all equal

function f is balanced i.e., Pr[f(z) = 1] = 1/2, then to each other. The following lemma reveals the connection

it has a non-zero Fourier coefficient of orde(k). The with the Fourier coefficients of .

2k/3 bottleneck comes in the casewibalancedsymmet-

ric functions, which are analyzed through a different argu-

ment. As noted in [11], the result of [15] does not seem to

be applicable to learning unbalanced functions.

ps.o(f) =Pr[f(x) =1]|xs = 0]

Lemma 1 Let f be a boolean function oh variables. f is
t-null for somel < ¢ < k, if and only if, for allp £ S C [k]
with cardinality at most, f(.S) = 0.

Proof: Itcan be easily verified that jf is t-null, then for
all p # S C [k] with cardinality at most, f(S) = 0. This
follows from the fact that the Fourier coefficients of order
at mostt can be expressed dsl combinations ops . (f)
with o € {0,1}, andS C [£],|S| = ¢. When is ¢-null,
the terms cancel out. The proof of the other direction is by
induction and we omit it here. O

2 Fourier Coefficients of Boolean Functions
2.1 Notation

We consider boolean functions frof, 1}* — {0, 1}.
For a setS C [k], definexs : {0,1}* — {1,-1}
to be the functionyg(x) (—1)%ies ® (by conven-
tion, the boldfacex denotes the vectqrry, . .., x)). For

The following is an immediate corollary of this lemma.



Corollary 2 Let f be a boolean function oh variables. If Lemma 5 For a primep, an integerl > 0 and0 < ¢ < Ip,
fist-null for somel < ¢t < nthenfiss-nullfor1 < s < (") = (;) mod p if i = jp for some0 < j < [, and0

t. otherwise.

When we consider the case of symmetric functions . . ,
. : ’ : <5< =
ps,o(f) just depends os := |S| and the weightv of o. Eroof .Foraprlm?o,imdo =7 =P (J) i 1 mod pif
We denote this bys ., (f). Itis clear that: j=0o0rj=p,and (7) =0 mod p otherwise. Hence, for
an indeterminate;, (1 + x)? = 1 + 2 mod p. Consider

1 K (k—s S (P)at = (1+2) = ((1+2)?)". Reducing this
Psw(f) = ok—s Z fi i—w sum modula, and using the fact above, one obtains
=0
lp
\{vhgre(;). is0if m < 0orm > and(f) is1. By 3 (@)mi = (1427 mod p.
definition, f is s-null if for 0 < w < s, ps.,(f) are all o\
equal. Hencef is s-null iff there existsc := ¢(f, s, k) such }
that But (1 + 2P)! = Z;:O (;)LW Comparing coefficients of
k : . . .
k — pJ
Z . s fome VO<w<s o P4 on b_oth sides of the above equation, one gets the desired
g \i—w conclusion. 0
Thus we have: On numerous occasions, we will use the following result

about the density of primes. This follows from the Prime
Lemma3 For1 < s <k, letA; bethe(s+1)x (k+1) Number Theorem.

matrix:
k— 5) Lemma 6 For large enoug, there is a prime < n, such

Ag.s(4,1) = (Z _ thatp = n — o(n).

A symmetric functiorf is s-null if and only if there exists a

positive integer: := ¢(f, s, k) such that: 3.2 The case of:/2

Aps-v(f)=c1 In this section we give a self-contained proof of the fol-

. . lowing (weaker) result. The aim is to illustrate the key ideas
It is easy to see that the constant boolean functionspyaping the proof of Theorem 9.

{0, 1} satisfy this system of equations for all i.e. they _ _
ares-null for all s, s.t.1 < s < k. One can also see thatthe Theorem 7 For any symmetric boolean functiofi on k&

boolean functiong®, ©} ares-null forall s s.t. 1 < s < k. variables withf ¢ {0,1,®, &}, there existsl < ¢t <
From Lemma 1 and Lemma 3 we get: % + o(k) such thatf, # 0.

Corollary 4 All symmetric boolean functionsf ¢ We need the following combinatorial lemma. For posi-
{0,1,,3} have a non-zero Fourier coefficient of order tive integerst, p, ¢, s.t.p # g, let Gy, 4 be the graph with
at mosts, (and at leastl) iff there exists, 1 < s < sos.t.  vertexsef{0,1,2,...,k},and the edge séti, j) : [i—j| =
{0,1,®, @} are the only solutions to porgj.

ks k b s Lemma 8 For positive integers:, p, ¢ such that(p,q) = 1
Zﬁ( , > =..= Zfl( > 2) andp + ¢ < k, Gy, 4 is connected.

i=0 ! i=s t=s

Proof:  We proceed by induction gn+ ¢. Without loss
of generality, letp > ¢. Clearly, the lemma holds for the
base case. Letjbest0<i<j<kandj—i=p—q.
Sincep+q < k, eitheri+p < kori—q > 0. In either case,
there is a path of length between and;. Hence replacing

The question is how large musg in the statement of
Corollary 4 be. In the next section, we show that< %k
for large enouglk.

3 The Main Result the edgeg (u, v) : ju—v| = p} by the new edge§(v’, v') :
|u' —v'| = p— ¢} does not increase the connectivity of the
3.1 Number theoretic preliminaries graph. It suffices to show thét;, ,,_, , is connected, which
follows by the induction hypothesis. O

We will first present some facts that we are going to use
in proving our main theorem. The next easy result is a spe-Proof of Theorem 7 :  Let f be a symmetric function
cial case of Lucas’ Theorem [6] and illustrates Hedf sim- such that for every <t < §+o(k), ft = 0. We will show
ilar nature of the Pascal’s Triangle modulo primes. thatf € {0,1, 3, 3}.



By Lemma 6, we can pick primes ¢, s.t. g —o(k) =

p < ¢ < %. Sincek —p andk — g are both at mos§ +o(k),

we get from Lemma 1 thatis (k—p)-null and(k — ¢)-null.
Hence, by Lemma 3 ¢y, ¢ such that

Ak,k_plj(f) =c1 and Ak,k_ql/(f) =col

Consider these two systems of equations moguénd ¢
respectively. Let) < ¢, < pand0 < ¢4 < ¢ be s.t.
¢p = ¢ modp, ande;, = ¢z mod ¢g. We will use=,
to denote congruenceanod p (and similarly forg). The
systems become:

Ak,k_pl/(f) =p Cp]. and Akyk_ql/(f) =4 qu

Now, from Lemma 5, we see th@) =, 1if i = 0 or
i = p, and(?) =, 0 otherwise (and similarly fog). Hence
we see that the equations are of the form

fi+fi+pzpcp for Oglﬁkfp
and
fi+fi+q£ch fOI’OSZﬁk*(]

Sincef; € {0,1} andp > 2, these modular equations are
in fact exact equalities ang, ¢, € {0, 1,2}. If ¢, = 0 then

it follows thatc, = 0 and f = 0 (because every variable
fi is present in at least one equation, sipcel £/2). If

¢p = 2thenc, = 2 andf = 1. The only remaining case is
¢p = ¢q = 1. This gives

fi=fiqp for 0<i<k-—p
and
fi=fizq for 0<i<k—gq

In other words/i — j| = p or ¢ implies thatf; = f;. Since
G p,q 1s connected (Lemma 8) it follows that fixing the
value of anyf; uniquely determineg, and hence, there are
at most 2 possible choices ffr We can see thdtp, @} are

Proof :

Let f be a symmetric boolean function dnvariables.
Suppose thaf is t-null, for all t < (7111 + e) k. We will
show thatf € {0,1,®, ®}.

Letm = [ — s. Assume that there is a primesuch that

k = (m+s+1)p— 1. We handle the case when there is no
such primep later. Set := k — mp = (s + 1)p — 1. Since

k+1
s+171§ s+1 i
[+1 [+1

=711
s+1
t= k
(z n 1) *
Hence,f is t-null and there is an integersuch that
Apv(f) = cl. 3)

We remark that the role efis redundant in this case. It will
play a role when we cannot chogssuch that —t = mp.

Reducing to a smaller problem

Note that, by definition of, k — ¢t = mp. For0 <i <p —

1, let¥; := (fi, fitps fit2ps-- -, fitip). HENCE, reducing
Equations (3) module, and using Lemma 5, one obtains
the following systems of equations.

A Fo =, 1
Al,sFl =p C/].
Al,st—l Ep C/].

Herecd’ = ¢ mod p. By choosingk, large enough, we can
ensure that fok > ko, p > 2'. In that case, the modular
equations are in fact exact. Thatis, there is an intéger0,
such that the following set of equations hold:

solutions to the equations, hence they are the only solutions

in this case.
O

3.3 The main theorem

In this section we prove our main theorem. Recall that

7(k) is the smallest number such that every symmetric
boolean functionf on k variables, withf ¢ {0,1,®, @},
has a non-zero Fourier coefficient of order at |daahd at
mostt.

Theorem 9 Let 0 < s < [ be fixed integers such that
7(l) < s and lete > 0. There exists a constamt :=

ko(l, €) such that, for allk > ko, 7(k) < (S“ + e) k.

I+1

A sFo = dl
A Fr = dl

: @)
AF,_, = di

Using the fact that (1) < s, we deduce that for any the
system of equationd,; ;F; = d1 has at mostt solutions,
namely the constant and parity solutions (when treaking
as a symmetric function ohbits). This implies that there
are at mostl? choices forf. Now we show how to narrow
down these choices th

Combining the smaller instances

Let 2 < mp < g < (m+1)p be a prime. Sincg is t-null,
andt = k—mp > k — ¢, by Corollary 2,f is (k — q)-
null. Consider the system of equatiods ,_,v(f) = c1



modulo the primey. As in the proof of Theorem 7, we get, 3.4 An explicit bound on (k)
for somee > 0, exact equations of the following form:
Using a computer search, we verified (among others) that
fot+f, = e 7(30) = 2. Plugging this in Theorem 9, we obtain the fol-
Fit fon lowing Corollary:

Il
)

®) Corollary 11 Lete > 0. There exists a constaiy :=

ko(e) such that, for allk > ko, and for every symmetric
fo—at+tfe = e boolean functionf on k variables withf ¢ {0,1,®,®},
there is an integell < ¢ < (35 + ¢) k, such thatf has a

The idea is that these equations, along with Equations (4)'n0n-zero Fourier coefficient of order

are sufficient to restrictf to one of the four functions,
{0,1, 9,3}, as desired. First, we need a simple fact. For . L
an integer- > 0, let (r), := r mod p. Also, for0 < i < 4 Learning symmetric juntas
p—1,let[igl, := {(iq)p, (iq)p +p, ..., (iq)p + (Mm+ s)p}.
In this section we apply Corollary 11 to obtain fast learn-
Fact 10 For0 < i < j < p— 1, [ig], N [jq, = 0. ing aIgoriFhms for the class of symmgtﬁg’untas o vari-
ables. First we need some preliminaries and well known

. . - Is from com ional learning theory.
Now, fix fo, f, € Fo. As noticed before, this fixes all tools from computational learning theory

the variables irFy. Using Equations (5), in particular, we
get thatf, and f,,, are fixed. Now Equations (4) imply
that all the indices iF ), get fixed. Iterating the alternate W ider the PAC | : del 1121, The |
use of these two systems of equations, along with Fact 10, € tt:)cl)n3| erht ed s earnmglm% e_ [ ]C E ean-
one obtains that all the variableshh, for everyi, are fixed, Ing Eﬂro Iem a|t| an |sfbon<|:ept f ass = LfJn "’lwn ere
oncef, andf, are fixed. Hencef has at most four choices: eachC,, is a collection of boolean functions frofo, _} -
{0,1,®, 3}, one for every possible fixing dffo, f, }- {0,1}. Let ¢ be anaccuracy parameteandé a confidence
7Si;1ce7 weyneegd > 90 and sincet — (I+1) _’1 pwe can parameter A learning algorithmA for C has access to an
chooseko :— ko(l) such that for aIE: . p’l’(k’), < i oracle Z(f) for f € C,. A query toZ(f) outputs a la-
070 =" = beled examplex, f(x)), wherex is drawn from{0, 1}"

4.1 Preliminaries

(fﬂ) k+ fﬂ -1< (%11) k. according to some probability distributios is said to be a
learning algorithm for the clagsif for all f € C, whenA
Handling the residual class of variables is run with oracleZ(f), it outputs, with probability at least

1 — 4, a hypothesi® such thaPr[h(x) = f(x)] > 1 — .
thatk = (m + s + 1)p — 1. In this case, we pick a prime Although' Valignt’s PAC modgl is defined for general .distri-

) . butions, in this paper we will be concerned only with the
p in the interval {ﬁ —o(k), ﬁ} . We are guar- niform distribution.
anteed the existence of such a prime by Lemma 6. Let We recall the definition of &-junta. Letf : {0,1}" —
t = k— mp. Hence,(s + 1)p + o(p) >t > (s + 1)p. {0,1} be a boolean function. We say thatlepend®n the
Since we think ofm as a constantp = (k). Hence,  variable, if there are vectors andy that differ only on the
there is a small numbeb(k)) of variables, sayR, which 'th coordinate andgf(x) # f(y). A function that depends
remain to be dealt with in the previous argument. In par- only on an (unknown) subset &f < n variables is called
ticularR = { fu11)p, far)pt1s - fe ) @and{fo, ..., fr} = ak-junta. The variables on whicf depends are called the
(Uf;olFi)UR. By the argumentin the previous case, fixing relevantvariables off. Typically k = O(logn). Hence,

a running time that is polynomial i2*, n andlog(1/6) is

considered efficient. A symmetricjuntais a boolean func-
[ c . ree tion which is symmetric in the variables it depends on. The
one of the Equations (5) along with a variableufi-, ¥, class of all such functions defined arvariables is the class
and hence gets fixed. of symmetrick-juntas. In this section, we present an algo-

As before, we need to ensure that > 2. Since rithm for learning this class in the uniform PAC model.
p = 725 — o(k), we can choose, for every > 0, large

enoughky := ko(l, €), such that for alk > ko, 7(k) <t < 4.2 Analysis of the Fourier based algorithm
(5“ + e) k. This completes the proof of Theorem 9.

I+1
O We will use the following facts about learning in the PAC
model which are well known.

Now we consider the case when there is no prisreich

fo and f, fixes all the variables in?—, F,. Further, since
|IR| = o(k), andg > k/2, every variable inR appears in




(i) We can exactly calculate the Fourier coefficients problems, it will be very useful to be able to determir{é)
of the target function with confidencé — § in quickly for! > 30. Right now, we know of no method other
time poly(log1/8, 2¥,n) using standard Chernoff- than essentially an exponential algorithm.

Hoeffding bounds (see [9, 11]).

(i) We can decide whether the target functipis constant 6  Results of the Computer Search

or not in timepoly(log 1/5, 2%).

The following table is based on a computational search
for 7(I) for small values of. The rows in the table corre-
spond to values of. The columns correspond to various
values ofs. The(l, s)-th entry of the table is the number of
symmetric boolean functiongsuch that4, ;v (f) is a con-

¢ stant vector. Hence, whenever this entry.is () < s. The
least value ofs— for which7(1) < sisfori = 30,s = 2,
giving the rat|o3/31

(i) We can learn a parity function in time
n“poly(log1/5,2%) [7]. Here w is the exponent
for matrix multiplication,w < 2.376.

We state the standard Fourier based algorithm below:
Throughout the algorithm, we maintain a set of relevan
variables,R.

e Check if the function is constant or parity.

Theorem 12 The class of symmetrié-juntas can be
learned exactly under the uniform distribution with confi-

l s=1|s=2| s=3| s=4
e Ifnot, setR :=0, ¢ := 1. 5 7 7 7 7
1. For every subset of variables, sayS = 3 6| 4] 4| 4
{xil,...,xit}dOZ 4 8 4 4 4
@) CoAmputef(S). 2 2?) j j j
(b) If f(S)+#0,thenR:=RUS. 7 26 ) 4 2
2. Iffor all setsS of sizet, f(S) = Othent := t+1 8 48| 10| 6| 4
and go to step 1. 9 42 | 10 6 4
3. Else, R now contains all the relevant variables. 10 64 6 6 4
Draw enough samples to buifts truth table and 11 66 4 4 4
halt. 12 144 4 4 4
13 178 8 4 4
If x; is an irrelevant variable fof, then it is easy to see 14 452 | 14 6 4
that for anysS containingz;, f(S) = 0. Hence iff(S) # 0, 15 428 | 26 8 4
for someS, thenS contains only relevant variables. Since 16 576 | 12| 12 4
the function is symmetric, for any two sets7" of rele- 17 514 4 4 4
vant variables such thas| = |T'|, we havef(S) = f(T). 18| 1072 4 4 4
Hence the first time that we will identify some relevant vari- 19| 1442 12 4 4
ables in the algorithmf(.S) # 0 for someS, |S| = s), we 20| 2864 16 ) 4
will actually be able to identify all the relevant variables, 21 2534 16 8 4
and the running time will be roughly®. As a direct conse- 22 | 4608 8 8 4
guence of Corollary 11 we obtain the following Theorem: 23 | 6402 3 2 )
6 4
6 4
dencel — § in timen 5t To®) . poly(2* 26 - - -] 4
¥(2¥,m,log(1/5)). e .

. 28 - - - 4

5 Conclusion 9 - - T2
30 - 4 4 4

The most important open problem that remains is to as-
certain the true behavior of the functieifk). It may even
be thatr (k) is a constant for alk, but resolving this seems Acknowledgments
hard. A relatively easier problem, which seems approach-
able, is to show that(k) is at most a constant for in- We would like to thank Saugata Basu, Nikhil Devanur
finitely many k. Using Theorem 9, this will already imply and Tejas lyer for useful comments and discussions. We
7(k) < ek, for all e > 0, for large enougtk. Among other also thank the anonymous referees for their comments.
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