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Abstract

We present a modification of “Normalized Cuts” to in-

corporate priors which can be used for constrained im-

age segmentation. Compared to previous generalizations

of “Normalized Cuts” which incorporate constraints, our

technique has two advantages. First, we seek solutions

which are sufficiently “correlated” with priors which allows

us to use noisy top-down information, for example from an

object detector. Second, given the spectral solution of the

unconstrained problem, the solution of the constrained one

can be computed in small additional time, which allows

us to run the algorithm in an interactive mode. We com-

pare our algorithm to other graph cut based algorithms and

highlight the advantages.

1. Introduction

Consider Figure 1. Suppose that we want to segment the

cat from its background. We can approach this

1. Bottom-up, we might detect contours corresponding to

significant changes in brightness, color or texture. The

output of one such detector is shown in Figure 1(b).

Note that there will be internal contours, e.g. corre-

sponding to the colored spots, that are of higher con-

trast than the external contour separating the cat from

its background. This makes it difficult for any bottom-

up segmentation process to separate the cat from its

background in the absence of high-level knowledge of

what cats look like.

2. Top-down, we might look for strong activation of, say,

a sliding window cat detector. The output of one such

part-based detector is shown in Figure 1(c). But note

that this too is inadequate for our purpose. The outputs

of these detectors are typically not sharply localized;

indeed that is almost a consequence of the desire to

make them invariant to small deformations.

In this paper we present an approach, “Biased Normal-

ized Cuts”, where we try to get the best of both worlds,

(a) Image (b) Bottom-up (c) Top-down (d) Biased Ncut

Figure 1. Segmentation using bottom-up & top-down information.

with results as shown in Figure 1(d). The formalism is that

of graph partitioning approached using tools and techniques

from spectral graph theory. As in Normalized Cuts [18], we

begin by computing eigenvectors of the Normalized Lapla-

cian of a graph where the edge weights wij correspond to

the “affinity” between two pixels based on low-level simi-

larity cues. This is illustrated in Figure 2 for the cat image,

where the top row shows the second to fifth eigenvectors,

ui. Note that none of them is a particularly good indicator

vector from which the cat can be extracted by thresholding.

We are interested in cuts which not only minimize the

normalized cut value but, at the same time, one of the sets

in the partition (S, S̄) is required to have a sufficient over-

lap with a “bias” or a “prior guess”. In Figure 1, this was

the output of a top-down detector. In Figure 2, bottom

row, the user has specified the bias by indicating various

point sets T in the different panels. We will define a seed-

vector sT associated to T . Let DG be the diagonal matrix

of the graph, and ui, λi be the eigenvectors and eigenval-

ues of the Normalized Laplacian. Theorem 3.1 (originally

due to [15]) shows that we can get cuts that meet the twin

goals of having a small normalized cut, and being suffi-

ciently correlated with sT by a remarkably simple proce-

dure. Construct the biased normalized cut vector, x⋆, where

x⋆ = c
∑n

i=2
1

λi−γui

(

uT
i DGsT

)

. Intuitively the eigenvec-

tors are linearly combined such that the ones that are well

correlated with the seed vector are up weighted, while those

that are inversely correlated have their sign flipped. In Fig-

ure 2 bottom row, these vectors are shown as images, and

the bias point sets are overlaid. This vector x⋆ can be thresh-

olded to find the desired “biased normalized cut”. One can
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run the algorithm in an interactive mode by computing the

eigenvectors once and generating the biased normalized cut

for any bias.

2. Previous Work

Spectral graph theory originated in the 1970s with work

such as Donath and Hoffman [10] and Fiedler [13]. By the

1990s, there was a well developed literature in mathematics

and theoretical computer science, and Chung [9] provides

a monograph level treatment. In computer vision and ma-

chine learning, the work of Shi and Malik on normalized

cuts [18, 19] was very influential, and since then a signifi-

cant body of work has emerged in these fields that we can-

not possibly do justice here. The best current approaches

to finding contours and regions bottom up are still based on

variations of this theme [16].

Given our interest in this work of biasing the solution

to satisfy additional constraints, two papers need particular

mention. The problem in the constrained setting for image

segmentation has been studied by Yu and Shi [21] where

they find the solution to the normalized cuts problem sub-

ject to a set of linear constraints of the form UTx = 0. This

problem can be reduced to an eigenvalue problem which

can be solved using spectral techniques as well. Ericks-

son et al. [11] generalize the set of constraints to UTx = b.
We will see in Section 5 that enforcing constraints in this

manner is not robust when the constraints are noisy. The

computational complexity of these approaches is also sig-

nificantly higher than that of solving the basic normalized

cuts problem.

In the last decade the most popular approach to inter-

active image segmentation in computer vision and graph-

ics has followed in the steps of the work of Boykov and

Jolly [7] who find an image segmentation by computing a

min-cut/max-flow on a graph which encodes both the user

constraints and pairwise pixel similarity. This line of work

has been further investigated by Blake and Rother [3] where

they experiment with ways to model the foreground and

background regions. In the GrabCut framework [17], the

process of segmentation and foreground/background mod-

eling is repeated till convergence. With the advances in the

min-cut/max-flow algorithms like [6], these methods have

become computationally attractive and can often be used in

an interactive mode. However, these methods fail when the

constraints are sparse making it difficult to construct good

foreground/background models and these methods tend to

produce isolated cuts.

From a theoretical perspective, there has been a signif-

icant interest in the cut improvement problem: given as

input a graph and a cut, find a subset that is a better cut.

This started with Gallo, Grigoriadis and Tarjan [14] and

has attained more recent attention in the work of Ander-

sen and Lang [2], who gave a general algorithm that uses a

small number of single-commodity maximum-flows to find

low-conductance cuts not only inside the input subset T ,

but among all cuts which are well-correlated with (T, T̄ ).
Among spectral methods, local graph partitioning was in-

troduced by Spielman and Teng [20], who were interested

in finding a low-conductance cut in a graph in time nearly-

linear in the volume of the output cut. They used random

walk based methods to do this; and subsequently this result

was improved by Andersen, Chung and Lang [1] by doing

certain Personalized PageRank based random walks.

3. Biased Graph Partitioning

Image as a Weighted Graph and Normalized Cuts. The

image is represented as a weighted undirected graph G =
(V,E) where the nodes of the graph are the points in the

feature space, and an edge is formed between every pair of

nodes. The weight function on the edges w : E 7→ R≥0

is a function of the similarity between the end points of the

edge. The volume of a set of vertices S is the total weight

of the edges incident to it: vol(S)
def
=

∑

i∈S,j∈V w(i, j).

vol(G)
def
=

∑

i,j∈V w(i, j) be the total weight of the edges in

the graph. Normalized cut measure, defined next, is a stan-

dard way to measure the degree of dissimilarity between

two pieces of an image. For S ⊆ V, let S̄ denote V \S.
Let cut(S, S̄)

def
=

∑

i∈S,j∈S̄ w(i, j) be the weight of edges

crossing the cut (S, S̄). Then, the normalized cut value cor-

responding to (S, S̄) is defined as

Ncut(S)
def
=

cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)
.

Noting that vol(S) + vol(S̄) = vol(G), it can be seen that

this notion of a normalized cut is the same as that of the

traditional graph conductance defined for a set S as

φ(S)
def
= vol(G) · cut(S, S̄)

vol(S) · vol(S̄) .

The conductance of the graph G is φ(G)
def
= minS⊆V φ(S)

and is an extremely well studied quantity in graph theory,

computer science and machine learning. It is NP-hard to

compute exactly and one of the earliest and most popular

approach to compute an approximation to it is to write down

a relaxation which boils down to computing the second

eigenvalue of the Laplacian matrix associated to a graph.

We discuss this next.

Graphs and Laplacians. For a graph G = (V,E) with

edge weights function w, let AG ∈ R
V ×V denote its ad-

jacency matrix with AG(i, j) = w(i, j); DG denotes the

diagonal degree matrix of G, i.e., DG(i, i) =
∑

j∈V w(i, j)

DG(i, j) = 0, for all i 6= j; LG
def
= DG − AG will
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Figure 2. Top Row: Input Image and the top 4 eigenvectors computed using the intervening contour cue [16]. Bottom Row: Biased

normalized cuts for various seed sets T . The marked points in each image are the set of points in T .

denote the (combinatorial) Laplacian of G; and LG def
=

D
−1/2
G LGD

−1/2
G will denote the normalized Laplacian of

G. We will assume G is connected, in which case the

eigenvalues of LG are 0 = λ1 < λ2 ≤ · · · ≤ λn.
We will denote by λ2(G) as this second eigenvalue of the

normalized Laplacian of G. If u1, . . . , un are the corre-

sponding eigenvectors of LG, then we define vi
def
= D

− 1

2

G ui

and think of them as the associated eigenvectors of LG;
LGvi = λiDGvi. The spectral decomposition of LG can

be written as
∑n

i=2 λiuiu
T
i . We can also define the Moore-

Penrose pseudo-inverse of LG as L+G
def
=

∑n
i=2

1
λi
uiu

T
i .

The Spectral Relaxation to Computing Normalized

Cuts. Spectral methods approximate the solution to nor-

malized cuts by trying to find a x ∈ R
V which minimizes

xTLGx subject to
∑

i,j∈V didj(xi − xj)
2 = vol(G). To

see why this is a relaxation first, for a subset S of ver-

tices, let 1S be the indicator vector of S in R
V . Then

1TSLG1S =
∑

ij∈E wi,j(1S(i) − 1S(j))
2 = cut(S, S̄) and

∑

i,j∈V didj(1S(i) − 1S(j))
2 = vol(S)vol(S̄). Hence, if

we let x =
√

vol(G)

vol(S)·vol(S̄)
· 1S , then x satisfies the above

constraints and has objective value exactly φ(S). Hence, the

minimum of the quadratic program above can be at-most the

normalized cut value of G.

In fact, it is easy to see that the optimal value of this

optimization problem, if G is connected, is λ2(G) and the

optimal vector to this program is D
− 1

2

G u2, where u2 is the

eigenvector corresponding to the smallest non-zero eigen-

value (λ2(G)) of LG. In particular, the optimal vector x⋆

has the property that
∑

i∈V x⋆
i di = 0.

Biased Normalized Cuts. Now we move on to incorpo-

rating the prior information given to us about the image to

define the notion of biased normalized cuts. Recall that

our problem is: we are given a region of interest in the

image and we would like to segment the image so that

the segment is biased towards the specified region. A re-

gion is modeled as a subset T ⊆ V, of the vertices of the

image. We would be interested in cuts (S, S̄) which not

only minimize the normalized cut value but, at the same

time, have sufficient correlation with the region specified

by T. To model this, we will first associate a vector sT to

the set T as follows: sT (i) =
√

vol(T )vol(T̄ )
vol(G) · 1

vol(T ) , if

i ∈ T , and sT (i) = −
√

vol(T )vol(T̄ )
vol(G) · 1

vol(T̄ )
if i ∈ T̄ ; or

equivalently, sT
def
=

√

vol(T )vol(T̄ )
vol(G)

(

1T
vol(T ) −

1T̄
vol(T̄ )

)

. We

have defined it in a way such that
∑

i∈V sT (i)di = 0 and
∑

i∈V sT (i)
2di = 1.

This notion of biased normalized cuts is quite natural and

motivated from the theory of local graph partitioning where

the goal is to find a low-conductance cut well correlated

with a specified input set. The correlation is specified by a

parameter κ ∈ (0, 1). This allows us to explore the possi-

bility of image segments which are well-correlated with the

prior information which may have much less normalized cut

value than T itself and, hence, refine the initial guess. In

particular, we consider the spectral relaxation in Figure 3 to

a κ-biased normalized cut around T .

Note that x = sT , is a feasible solution to this spectral

relaxation. Also note that if v2 satisfies the correlation con-

straint with sT , then it will be the optimal to this program.

What is quite interesting is that one can characterize the op-

timal solution to this spectral program under mild condi-
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minimize xTLGx

s.t.
∑

i,j∈V

didj(xi − xj)
2 = vol(G)

(
∑

i∈V

xisT (i)di)
2 ≥ κ

Figure 3. BiasedNcut(G,T, κ)- Spectral relaxation to compute

κ-biased normalized cuts around T

tions on the graph G and the set T and, as it turns out, one

has to do very little effort to compute the optimal solution if

one has already computed the spectrum of LG. This is cap-

tured by the following theorem which is due to [15]. We

include a proof of this in the appendix for completeness.

Theorem 3.1. Let G be a connected graph and T be such

that
∑

i∈V sT (i)v2(i)di 6= 0. Further, let 1 ≥ κ ≥ 0 be a

correlation parameter. Then, there is an optimal solution,

x⋆, to the spectral relaxation to the κ-biased normalized

cuts around T such that x⋆ = c
∑n

i=2
1

λi−γuiu
T
i DGsT for

some γ ∈ (−∞, λ2(G)) and a constant c.

4. Algorithm

Theorem 3.1 shows that the final solution is a weighted

combination of the eigenvectors and the weight of each

eigenvector is proportional to the “correlation” with the

seed, uT
i DGsT and inversely proportional to λi − γ. In-

tuitively the eigenvectors that are well correlated with the

seed vector are up weighted, while those that are inversely

correlated have their sign flipped.

Often for images the λi − γ grows quickly and one can

obtain a good approximation by considering eigenvectors

for the K smallest eigenvalues. In our experiments with

natural images we set K = 26, i.e. use the top 25 eigen-

vectors ignoring the all ones vector. We also set γ pa-

rameter which controls the amount of correlation implic-

itly to γ = −τ × λavg , where τ = 1 and λavg is the av-

erage of the top K eigenvalues. This could also be user

defined parameter in an interactive setting. Algorithm 1

describes our method for computing the biased normalized

cuts. Steps 1, 2, 3 are also the steps for computing the seg-

mentations using normalized cuts which involve computing

the K smallest eigenvectors of the normalized graph lapla-

cian LG. The biased normalized cut for any seed vector

sT is the weighted combination of eigenvectors where the

weights are computed in step 4. In the interactive setting

only steps 4 and 5 need to be done when the seed vector

changes which is very quick.

The time taken by the algorithm is dominated by the time

taken to compute the eigenvectors. In an interactive setting

one can use special purpose hardware accelerated methods

to compute the eigenvectors of typical images in fraction

Algorithm 1 Biased Normalized Cuts (G,w, sT , γ)

Require: GraphG = (V,E), edge weight functionw, seed

sT and a correlation parameter γ ∈ (−∞, λ2(G))
1: AG(i, j)← w(i, j), DG(i, i)←

∑

j w(i, j)

2: LG ← DG − AG, LG ← D
−1/2
G LGD

−1/2
G

3: Compute u1, u2, . . . , uK the eigenvectors of LG corre-

sponding to theK smallest eigenvaluesλ1, λ2, . . . , λK .

4: wi ← uT

i
DGsT

λi−γ , for i = 2, . . . ,K

5: Obtain the biased normalized cut, x∗ ∝∑K
i=2 wiui

of a second [8]. Our method can be faster than the min-

cut/max-flow cut based approaches in an interactive setting

as these eigenvectors need to be computed just once. In ad-

dition the real valued solution like the one shown in Figure 2

might provide the user better guidance than a hard segmen-

tation produced by a min-cut algorithm.

5. Constrained Normalized Cuts

We compare our approach to the constrained normalized

cut formulation of Yu and Shi [21] and Ericksson et al. [11].

The later generalized the linear constraints to UTPx = b,
where b could be an arbitrary non-zero vector. We consider

a toy example similar to the one used by Yu and Shi. The au-

thors observe that when the set of constraints are small it is

better to use “conditioned constraints”, UTPx = 0, where

P = D−1W , instead of the original constraints, UTx = 0.

The ”conditioned constraints” propagate the constraints to

the neighbors of the constrained points avoiding solutions

that are too close to the unconstrained one.

To illustrate our approach, let us consider the points

p1, p2, . . . pn grouped into three sets S1, S2 and S3 from

left to right, as shown in Figure 4. We construct a graph

with edge weights between points pi and pj

wij = exp
(

−d(pi, pj)2/2σ2
)

(1)

with σ = 3, where d(x, y) is the Euclidean distance be-

tween the points x and y. The unconstrained solution to

the normalized cuts correctly groups the points as shown in

Figure 4.

Now suppose we want to group S1 and S3 together. This

can be done by adding a constraint that the circled points

belong to the same group and can encoded as a linear con-

straint of the form, xi−xj = 0, where i and j are the indices

of the constrained points. The constrained cut formulation

is able to correctly separate S1 and S3 from S2 as shown in

Figure 5(a). For our approach we construct the vector sT
with i, j ∈ T defined earlier and use the top 16 generalized

eigenvectors. The biased cut solution separates S1 and S3

from S2 as well.
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Figure 4. Input points (left) clustered using normalized cuts (right).

Next we increase the number of such constraints by ran-

domly sampling points from S1∪S3 and adding constraints

that they belong together. Given a set of n points we gen-

erate n − 1 constraints by ordering the points and adding a

constraint for each consecutive pair similar to the approach

of [21]. Instead of improving the solution, the solution to

the constrained cuts deteriorates when the number of con-

straints are large as the solution that separates S1 and S3

from S2 is no longer feasible. Our method on the other hand

gets better with more constraints as seen in Figure 5(b).

We also test the robustness of the algorithm to outliers

by adding some points from S2 into the constraints. The

constrained cut solution deteriorates even when there is one

outlier as seen in Figure 5(c). Our method on the other hand

remains fairly robust even when there are two outliers Fig-

ure 5(d).

6. Qualitative Evaluation

We present qualitative results on images taken from

PASCAL VOC 2010 dataset [12]. For all our experiments

we use the intervening contour cue [16] for computing the

weight matrix and 25 eigenvectors to compute the biased

normalized cut. We refrain from doing quantitive compari-

son on segmentation benchmarks as the goal of this paper is

to introduce a new algorithm for computing biased normal-

ized cuts, which is only one of the components of a good

segmentation engine.

Effect of γ. The correlation parameter γ when set smaller

values increases the correlation κ with the seed vector. Fig-

ure 6 shows the effect of γ on the result of the biased nor-

malized cut. One can obtain tighter cuts around the seed by

setting γ to smaller values. In an interactive setup this could

be adjusted by the user.

Bias from user interaction. We first test the algorithm

in the interactive setting by automatically sampling a set of

points inside the figure mask. Figure 7 shows the several ex-

ample outputs. All these images are taken from the animal

categories of the Pascal VOC 2010 detection dataset.

Image Pb Prior Biased Ncut

Figure 8. Biased normalized cuts using top-down priors from an

object detector.

Bias from object detectors. Although in our formulation

the seed vector sT was discrete, it is not necessary. In par-

ticular we can use the probability estimates produced by an

object detector as a bias. Figure 8 shows some examples

of a top down segmentation mask generated by the detector

of [4] used as a seed vector directly after normalization.

7. Conclusion

We present a simple and effective method for comput-

ing the biased normalized cuts of the images to incorporate

top-down priors or user input. The formulation is attractive

as it allows one to incorporate these priors without addi-

tional overhead. Linear combinations of eigenvectors nat-

urally “regularizes” the combinatorial space of segmenta-

tions. Code for computing biased normalized cuts interac-

tively on images can be downloaded at the author’s website.

Acknowledgements: Thanks to Pablo Arbelaez. Subhransu Maji is sup-

ported by a fellowship from Google Inc. and ONR MURI N00014-06-1-

0734. The work was done when the authors were at Microsoft Research

India.

A. Appendix

Proof. [of Theorem 3.1] To start off, note that

BiasedNcut(G, T, κ) is a non-convex program. One

can relax it to SDPp(G, T, κ) of Figure 9. In the same

figure the dual of this SDP appears: SDPd(G, T, κ). Here,

for matrices A,B ∈ R
n×n, A ◦ B

def
=

∑

i,j Ai,jBi,j .

Also Ln
def
= DG − 1

vol(G)DGJDG, where J is the matrix
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Figure 5. Comparison of our biased normalized cut approach to constrained cut approach of [21, 11] for various constraints shown by

red circled points. When the number of constraints is large (b) or there are outliers (c, d), our method produces better solutions than the

solution of constrained cuts.

Figure 6. Effect of γ. Input image and biased cuts for decreasing values of γ from left to right. The local cuts are more and more correlated

with the seed set (shown as dots) as γ decreases.

with Ji,j = 1 for all i, j. Verifying Slater’s condition,

one can observe that strong duality holds for this SDP

relaxation. Then, using strong duality and the comple-

mentary slackness conditions implied by it, we will argue

that the SDPp(G, T, κ) has a rank one optimal solution

under the conditions of the theorem. This implies that

the optimal solution of SDPp(G, T, κ) is the same as the

optimal solution of BiasedNcut. Combining this with the

complementary slackness condition obtained from the dual

SDPd(G, T, κ), one can derive that the optimal rank one

solution has, up to a constant, the desired form promised

by the theorem. Now we expand the above steps in claims.

Claim A.1. The primal SDPp(G, T, κ) is a relaxation of

the vector program BiasedNcut(G, T, κ).

Proof. Consider a vector x that is a feasible solution to

BiasedNcut(G, T, κ), and note that X = xxT is a feasible

solution to SDPp(G, T, κ).

Claim A.2. Strong duality holds between SDPp(G, T, κ)
and SDPd(G, T, κ).

Proof. Since SDPp(G, T, κ) is convex, if suffices to ver-

ify that Slater’s constraint qualification condition is true

minimize LG ◦X
subject to Ln ◦X = 1

(DGsT )(DGsT )
T ◦X ≥ κ

X � 0

maximize α+ κβ

subject to LG � αLn + β(DGsT )(DGsT )
T

α ∈ R, β ≥ 0
Figure 9. Top: SDPp(G,T, κ) Primal SDP relaxation. Bottom:

SDPd(G,T, κ) Dual SDP

for this primal SDP. Consider X = sT sT
T . Then,

(DGsT )(DGsT )
T ◦ sT sT T = (sT

TDGsT )
2 = 1 > κ.

Claim A.3. The feasibility and complementary slackness

conditions for a primal-dual pair X⋆, α⋆, β⋆ listed in Fig-

ure 10 are sufficient for them to be an optimal solution.

Proof. This follows from the convexity of SDPp(G, T, κ)
and Slater’s condition [5].
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Image Pb Biased Ncut Image Pb Biased Ncut

Figure 7. Example biased cuts. Images shown with the “probability of boundary” map (Pb) computed using [16] and the biased normalized

cut for various seed sets (marked as red dots).
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Ln ◦X⋆ = 1

(DGsT )(DGsT )
T ◦X⋆ ≥ κ

LG − α⋆Ln − β⋆(DGsT )(DGsT )
T � 0

β⋆ ≥ 0

α⋆(Ln ◦X⋆ − 1) = 0

β⋆((DGsT )(DGsT )
T ◦X⋆ − κ) = 0

X⋆ ◦ (LG − α⋆Ln − β⋆(DGsT )(DGsT )
T ) = 0

Figure 10. Top: Feasibility conditions. Bottom: Complementary

slackness conditions.

Claim A.4. These feasibility and complementary slackness

conditions, coupled with the assumptions of the theorem,

imply that X⋆ must be rank 1 and β⋆ > 0.

Now we complete the proof of the theorem. From Claim

A.4 it follows that, X⋆ = x⋆x⋆T where x⋆ satisfies the

equation (LG−α⋆Ln−β⋆(DGsT )(DGsT )
T )x⋆ = 0. From

the second complementary slackness condition in Figure

10, and the fact that β⋆ > 0,we obtain that
∑

i x
⋆
i sT (i)di =

±√κ. Thus, x⋆ = ±β⋆
√
κ(LG − α⋆Ln)

+DGsT . This

proves the theorem.

A.1. Proof of Claim A.4

Proof. We start by stating two facts. The second is trivial.

Fact A.5. α⋆ ≤ λ2(G). Moreover if λ2 = α⋆ then
∑

i v2(i)sT (i)di = 0.

Proof. Recall that v2 = D
− 1

2

G u2 where u2 is the unit length

eigenvector corresponding to λ2(G) of LG. Plugging in v2
in Equation 3 from the feasibility conditions, we obtain that

vT2 LGv2−α⋆−β⋆(
∑

i v2(i)sT (i)di)
2 ≥ 0. But vT2 LGv2 =

λ2(G) and β⋆ ≥ 0. Hence, λ2(G) ≥ α⋆. It follows that if

λ2 = α⋆ then
∑

i v2(i)sT (i)di = 0.

Fact A.6. We may assume that the optimal X⋆ satisfies

1TD
1

2

GX
⋆D

1

2

G1 = 0, where 1 is the all ones vector.

Now we return to the proof of Claim A.4. If we assume
∑

i v2(i)sT (i)di 6= 0, then we know that α⋆ < λ2(G) from

Fact A.5. Note that since G is connected and α⋆ < λ2(G),
LG − α⋆Ln has rank exactly n− 1. From the complemen-

tary slackness condition 2 we can deduce that the image of

X⋆ is in the kernel of LG − α⋆Ln − β⋆(DGsT )(DGsT )
T .

But β⋆(DGsT )(DGsT )
T is a rank one matrix and since

∑

i sT (i)di = 0, it reduces the rank of LG − α⋆Ln by one

precisely when β⋆ > 0. If β⋆ = 0 then X⋆ must be 0 which

is not possible if SDPp(G, T, κ) is feasible. Hence, the rank

of LG−α⋆Ln−β⋆(DGsT )(DGsT )
T must be exactly n−2

and since X⋆ cannot have any component along the all ones

vector, X⋆ must be rank one. This proves the claim.
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