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ABSTRACT. In a series of influential papers Eigen and his coworkers introduced the quasispecies model as a first-
order approximation to (Darwinian) evolution and applied it to self-reproducing molecules such as RNA or DNA in an
attempt to explain the origin of genetic information which gives rise to life. It was argued by Eigen that an important
property in such a model of evolution is the existence of an error threshold: A rate of error during the reproduction phase
below which genetic information is intact and above which it disappears. Besides the insights the quasispecies model
has provided on the emergence of life, perhaps its most powerful impact has been on the study of viruses where error
threshold phenomena has been leveraged to design drug strategies that attempt to mutate the virus to death. While the
existence of error thresholds for specific settings has been verified by computer simulations, and has been the basis for
the design of mutagenic drugs, a mathematical proof of this phenomena has remained elusive. The trouble is that one
can construct pathological examples for which no non-trivial error threshold can exist. In this paper we present a proof
of existence of a sharp error threshold in the quasispecies model for a large set of biologically relevant evolutionary
parameters. Our analysis benefits from viewing the quasispecies model as an evolutionary process on the hypercube
which permits the use of simple yet powerful ideas from linear algebra and Fourier analysis.

FIGURE 1. Simulation results for a single peak model on binary strings of length 20 where the curves
shown correspond to the relative concentration of strings of the given Hamming weight at the steady state.
The illustration implies a phase transition when the error rate is about 0.11. From [Eig02].
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1. INTRODUCTION

Eigen et al. [Eig71, ES77, EMS88, EMS89] introduced the quasispecies model, a remarkably clean mathemat-
ical model that captured the error-prone evolution of mol-ecules such as RNA and addressed the origins-of-life
question. It was argued, see [Eig93], that an important property of such a model is the existence of an error thresh-
old1, i.e., a replication error rate below which genetic information is intact and above which it is destroyed. Besides
the insights the quasispecies model provides on the emergence of life, it has had a powerful impact on design
of drug strategies for RNA-viruses such as Foot-and-Mouth-Disease [HD98], Poliovirus [CCA01] and even RNA
retroviruses such as HIV [LEK+99]. In all these cases, the error threshold phenomena is leveraged to attempt to
mutate the virus to death, see [Vis12]. While the existence of error thresholds for specific settings has been verified
by computer simulations [EMS89, SS82] (e.g., Figure 1) for various biological settings, a mathematical proof of
this phenomena did not exist. Problematically, one can construct pathological examples for which no non-trivial
error threshold exists. The main contribution of this paper is to rigorously study error thresholds in the quasispecies
model of evolution, identify a class of biologically relevant parameters and prove the existence of error threshold
in such cases.
1.1. The Quasispecies Model. We describe the quasispecies model for discrete-time evolution of strings of length
L comprising of two building blocks 0 and 1.2 Thus, the model considers L-bit strings, {0,1}L, and is parametrized
by an error or mutation rate µ and a fitness function or landscape a : {0,1}L 7→Z≥1. The mutation rate indicates the
per-bit copying error during reproduction and for a string σ ∈{0,1}L, its fitness aσ

def
= a(σ) captures its survivability

with respect to an environment.3 The process starts with a distribution over {0,1}L and it iterates deterministically
applying the tenets of reproduction-selection-mutation. In the reproduction stage each σ produces aσ copies of
itself, in the selection stage we normalize, obtaining a new distribution over {0,1}L, and finally, mutation occurs.
The eventual outcome of the evolutionary process is not a single string (i.e., a species), rather it is an invariant
distribution, justifying the term quasispecies. In this sense, it is a first-order approximation to Darwinian survival-
of-the-fittest evolution.

Suppose m(0) is the starting distribution over the population at time 0 and, more generally, let mσ (t) denote
the fraction of the population of σ at time t. If reproduction were error-free then mσ (t +1) would be proportional
to aσ mσ (t). Instead, with errors, for every string τ , aτmτ(t)µdH(σ ,τ)(1− µ)L−dH(σ ,τ) (fractional) copies4 of σ are
produced (without normalization) where dH(σ ,τ) is the Hamming distance between σ and τ. This deterministic
process is the expectation of the randomized copying process where each bit of τ flips independently with proba-
bility µ. This process can be described by the following coupled difference equations:

(1) ∀σ ∈ {0,1}L, mσ (t +1) def
=

∑τ∈{0,1}L mτ(t)aτQµ

τσ

∑τ∈{0,1}L mτ(t)aτ

.

Here, Qµ

στ

def
= µdH(σ ,τ)(1− µ)L−dH(σ ,τ) = Qµ

τσ . If we let A be the diagonal matrix with Aσσ

def
= aσ , then the evolu-

tionary equation above can be succinctly expressed in the matrix form as

(2) m(t +1) def
=

QµAm(t)
‖Am(t)‖1

=
(QµA)t+1m(0)
‖Am(t)‖1

.

If we assume 0 < µ < 1, then QµA > 0 and it follows from the Perron-Frobenius Theorem that starting from
any initial distribution, the process converges to a unique limit vµ , the principal right eigenvector of QµA. The
population determined by vµ marks the culmination of the evolutionary process and is the quasispecies for the
evolution described by µ,L and a.

1Sometimes called the error catastrophe.
2Note that RNA and DNA molecules consist of strings of four building blocks, the neucleotides A, G, C and U (RNA) or T (DNA), so

the restriction to an alphabet of size two is not without loss of generality. However, as is standard in expositions related to the quasispecies
model including Eigen’s, results for the binary case extend to the quaternary case. Indeed, our results have analogues in the RNA/DNA
setting.

3As is the norm, we assume the environment and fitness function are fixed throughout the evolutionary process.
4The population in this model is assumed to be infinite justifying fractions.
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1.2. The Error Threshold. If µ is close to 0 then one would expect vµ to have its mass concentrated on sequences
of high fitness but not entirely on the fittest or master sequence. On the other hand note that if µ = 1/2, then vµ

σ = 1/2L

for all σ . This conforms with the intuition that if each bit, during copying, can be 0 or 1 with probability 1/2, then
no genetic information can be retained by the quasispecies. Interestingly, Eigen and his coworkers observed that
when the fitness landscape is single-peaked, i.e., the master sequence has fitness above 1 while the rest have fitness
1, this phenomena occurs much below µ = 1/2, in fact around 1/L. This led them to hypothesize that there exists a
particular mutation rate (below 1/2) beyond which all the 2L strings become nearly-equally abundant. They called
this critical mutation rate the error threshold as, beyond this rate the master sequence’s genetic information is lost,
and called this transition an error catastrophe; the mutation induced loss of genetic information. Subsequently
error threshold has been observed empirically for many other fitness functions, see [DSV12].

The notion of an error threshold is widely recognized, however no consensus exists on its definition; see
Wilke [Wil05]. Since vµ will hardly ever be U , the uniform distribution on {0,1}L, the goal is to find the smallest
µ such that vµ is close to U . To define the error threshold one needs a function that measures closeness. Since
both the uniform distribution and vµ are probability distributions, we can use the most prevalent way in probabil-
ity to measure closeness: ‖vµ −U ‖1

def
= ∑τ∈{0,1}L |vµ

τ − 1/2L|.5 In this paper, we define µ?(ε)
def
= min{µ ∈ (0,1) :

‖vµ −U ‖1 ≤ ε}. As noted before, when µ = 1/2, the steady state vector vµ is exactly U . Hence, µ?(ε) ≤ 1/2 for
all ε > 0. Thus, we will focus on µ in (0, 1/2].

Finally, the notion of error catastrophe is important in antiviral drug-design as several important viruses are
RNA viruses and their evolution can be captured to the first order by the quasispecies model. From the virus’ point
of view, a high mutation rate implies greater diversity, which in turn could mean greater adaptability and greater
ability to escape the hosts immune responses and pressure from drug therapy. At the same time, too high a mutation
rate induces a loss of genetic information. Thus, if we could increase the mutation rate past the error threshold, we
would severely compromise the virus’ identity. Intriguingly, this strategy is already employed by the body which
can produce antibodies that increase mutation rate. Artificially, this effect can also be accomplished by mutagenic
drugs such as ribavirin, see [CCA01].

1.3. What Makes the Quasispecies Model Hard? Given L,a, and ε , we wish to analytically determine6 the
smallest value of µ for which the vector vµ comes ε-close to the uniform distribution in the `1 norm. The matrix
Qµ is well studied in TCS and is often referred to as the noisy hypercube matrix. All its eigenvalues and eigenvectors
can be written explicitly in terms of the parameters µ and L. Additionally, A is a diagonal matrix whose eigenvectors
and eigenvalues are explicit. Hence, it may be tempting to believe that the eigenvalues and eigenvectors for QµA
can be easily determined. The problem is that A is not explicit (it is given as input) and the fact that it is a diagonal
matrix is superfluous (we could always make either matrix diagonal). Thus, since the eigenspaces interact in a
complex manner, the largest eigenvector of QµA does not seem to be derivable in closed form from the spectral
data of Qµ and A. In short, the Boolean function a, which gives the quasispecies model the ability to elegantly
capture complex evolutionary interactions, turns out to be the reason this process is difficult to analyze.

1.4. Our Contribution. It seems difficult to analytically determine the error threshold when the fitness landscape,
a, is arbitrary. Indeed, even the existence of a low error threshold in the simple-sounding, single-peak landscape
was only argued heuristically by Eigen and his coworkers. We first present a class of fitness functions which
generalize Eigen’s single-peak model and is implicit in almost all biological settings where the quasispecies model
is being deployed. First, consider how one obtains a fitness function. In applications L is at least a few thousand
and, for HIV-1, about 10000. Hence, it is not possible to expect 2L = 210000 distinct numbers as input. Moreover,
experimentally obtaining each of these numbers is a laborious and expensive process. Typically, the fitness is
estimated for a number of strings which are considered to carry genetic information and the rest are assumed to
be 1. Additionally, it can be argued that the fitness function has little to no dependance on L. Hence, a reasonable

5Other notions such as ‖vµ −U ‖2,‖vµ −U ‖∞ or the difference in Shannon entropies of vµ and U , can also be studied and µ? may
change accordingly.

6Often computing µ?(ε) suffices, see e.g. [DSV12, TBVD12]. However, analytical answers are useful as they provide the ability to ask
if-then questions and understand for what parameters the error threshold occurs much below 1/2.
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model is one where at most k strings have fitness 1 < aσ ≤ c and the rest have fitness 1 and where k,c are relatively
small compared to 2L. This leads us to the following definition.

Definition 1.1 ((c,k)-finite and bounded landscape). Let c and k be positive integers. A (c,k)-finite and bounded
landscape is a fitness function a : {0,1}L 7→ Z≥1 such that there exist σ1, . . . ,σk with 1 < aσi ≤ c and for all
σ 6∈ {σ1, . . . ,σk}, aσ = 1.

Note that when k = 1 this is equivalent to Eigen’s single-peak landscape model. For (c,k)-finite and bounded
landscapes we prove the following theorem.

Theorem 1.2 (Main Theorem). For a given L, (c,k)-finite and bounded fitness landscape and small enough ε > 0,

Ω

(
1
L

ln
c
ε

)
≤ µ?(ε)≤ O

(
1
L

ln
ckL
ε

)
.

Thus, consistent with in vitro and in silico observations, a sharp error threshold exists for (c,k)-finite and bounded
landscapes much below 1/2. As one might expect, the sharpness of the error threshold deteriorates as c and k
increase. One way to interpret `1 closeness is the following. If the probability vector vµ is ε close to the uniform
distribution in the `1 norm, then the number of indices σ , for which |vµ

σ − 1/2L| ≥ ε/C is at most C. A quantitatively
similar threshold can also be shown for closeness in `2 and average fitness, and is implicit in our work. The average
fitness, defined to be ∑σ vµ

σ aσ , is always at least 1, and an error catastrophe is said to occur if it drops below 1+ ε.
Note that both `2 and average are weaker notions of convergence: It can happen that vµ normalized to have `2 norm
1 is ε close to the corresponding uniform distribution but its distance in `1 norm is ε · 2L/2. Similarly, the largest
eigenvalue being at most 1+ ε (it has to be at least 1) gives a bound on `1 closeness which is not useful as such.

1.5. Open Problems. While we present the first formal proof of existence of sharp error threshold for a class
fitness functions motivated by practice, several questions remain open. Natural questions are to further tighten our
theorem and find more general and useful fitness functions for which such results can be proved. Another question
is if ‖vµ −U ‖1 converges monotonically to 0 as µ goes to 1/2. This question arises when one tries to compute the
error threshold by incrementing µ discretely. Our theorem implies that the distance goes to 0 at a certain rate for
(c,k)-finite and bounded landscapes, but does not establish monotonicity.

The next question concerns the spectral ratio of the QµA matrix. The spectral ratio determines the speed of
evolution the quasispecies model, and hence is an important parameter from a biological perspective.7 First notice
that for positive fitness function a, and 0 < µ < 1/2, all eigenvalues of QµA are positive real numbers. Ordering
these eigenvalues as λ1 ≥ λ2 ≥ ·· · ≥ λ2L , we call the ratio λ2/λ1 the spectral ratio of QA. It can be shown by standard
spectral techniques that the spectral ratio of QµA captures the convergence properties of the quasispecies model; at
time t, the distance ‖m(t)−vµ‖1 roughly goes down geometrically with respect to the spectral ratio. One tempting
conjecture is that for µ ∈ (0, 1/2), the spectral ratio is at most 1−2µ, that of the noisy hypercube. This is false in
general but can be shown easily when the fitness function is a tensor. Our techniques to prove Theorem 1.2, along
with the rank-one update formulas for eigenvalues can be used to establish near-tight bound on the spectral ratio
for the single-peak model. We omit the details. Can we establish upper bounds on the spectral ratio for the more
general (c,k)-finite and bounded landscapes?

1.6. Technical Overview. The proof of Theorem 1.2 combines simple tools from linear algebra and Fourier anal-
ysis of Boolean functions. Note that the fitness function a can be thought of as a Boolean function since its domain
is {0,1}L. It is useful to go back and forth between strings σ ∈ {0,1}L and subsets S of [L]. The matrix Qµ is the
noisy hypercube matrix whose eigenvectors are the characters of the hypercube. A character χS : {0,1}L 7→ {−1,1}
corresponding to S⊆ [L] is χS(σ)

def
= (−1)∑i∈S σi . These characters are orthogonal and can be normalized to have `2

norm 1. Let U be the matrix whose columns are these orthonormal characters. Thus, Qµ can be written as UDU>

where D is a diagonal matrix with DS,S
def
= (1− 2µ)|S|. Hence, one can rewrite QµA = UDU>A which is similar

to DU>AU since U>U = I. Note that U>AU is a rewriting of A in the Fourier basis and turns out to have a nice
form: Its diagonal entries are 1+α for some positive α and the off-diagonal entries are bounded in absolute value

7When modeling the effect of a mutagenic drug under the quasispecies model, the convergence rate determines the minimum required
duration of treatment.

4



by α. If A corresponds to a (c,k)-finite and bounded landscape, then we show that α is roughly ck
2L . Very roughly,

the spectrum of QµA behaves like D(I +αJ) which captures the effect of A. (See Lemma 2.4. Also note that if all
strings have the same fitness, k = 0 and α = 0 gives us back D.) More precisely, since QµA and, hence, DU>AU
is not symmetric, we work with its symmetrization W def

= D1/2U>AUD1/2. What is the relation between eigenvalues
and eigenvectors of QµA and W? It is easy to see that if w is an eigenvector of W with eigenvalue λ then UD1/2w is
an eigenvector of QµA with the same eigenvalue.8 This connection allows us to show that the largest eigenvalue of
QµA is at most 1+α(1−µ)L, α as before and the smallest at least about c(1−µ)L (see Corollary 2.7, Lemma 2.8
and Theorem 2.5). The fact that the eigenvalues of the noisy hypercube drop geometrically is crucial in the proofs.
Thus, when µ is above lnck/L, the largest eigenvalue comes close to 1. Note that the largest eigenvalue is always at
least 1. Since the largest eigenvalue captures the average fitness (see Lemma 2.3) of the quasispecies, it being close
to 1 means, in one way, that the quasispecies has lost its genetic information.

Even if the eigenvalue is close to 1 that does not necessarily imply that the eigenvector vµ is close to the uniform
vector in `1 norm as required by Theorem 1.2. Going from the largest eigenvector of W to that of QµA we must
worry about the norms due to the matrix D. One key observation here is that because vµ is non-negative, if w were
the largest eigenvector of W with `2 norm 1, then the `1 norm of the corresponding eigenvector, v def

= UD1/2w of QµA
is exactly 2L/2w /0. (See Lemma 2.9.) This allows us to show that the closeness of vµ = v

‖v‖1
to the uniform vector is

governed by w /0 and the relation between the `1 and `2 norm of v. In particular it can be shown that if w /0 ≥ 1−γ, for
some small enough γ, then the `1 and `2 norm of this are close to 2L/2 and 1 respectively, see Corollary 2.12. Thus,
for such a vector Cauchy-Schwarz is nearly tight and the vector has to be almost parallel to the uniform vector.
This, along with a lower bound on w /0 (see Lemma 2.16) turns out to be sufficient to establish an upper bound on
µ for vµ to be ε-close to the uniform vector in `1. The lower bound on the error threshold follows more easily via
eigenvalue considerations. The formal proof appears in the next section.

2. PROOFS

We start with some preliminaries with basic notations in Section 2.1.1, basics about diagonalizing Qµ in the
Fourier basis in Section 2.1.2 and some basic facts about the matrix QµA in Section 2.1.3. Section 2.2 contains the
proof of Theorem 1.2.

2.1. Preliminaries.

2.1.1. Notation. As above, vectors are denoted in bold and are indexed by the elements of Boolean hypercube
{0,1}L. In the sections below we also index by subsets S ⊆ [L] def

= {1, . . . ,L} for convenience. The `1 norm of a
vector v is denoted ‖v‖1

def
= ∑σ |vσ | and the `2 norm ‖v‖2

def
=
√

∑σ v2
σ . Let U1 denote the uniform probability vector

over {0,1}L, i.e., the vector with each entry set to 1/2L, and let U2 be the vector that has every entry set to 1/2L/2.

2.1.2. The Matrix Qµ and its Spectrum. As discussed in the introduction, it suffices to consider 0 < µ ≤ 1/2. Recall
that the matrix Qµ is defined such that Qµ

στ = µdH(σ ,τ)(1− µ)L−dH(σ ,τ) where dH(·, ·) measures the Hamming
distance between σ and τ. Note that Qµ is symmetric and, for µ as above, is positive semi-definite. For S ⊆ [L],

define χS(σ)
def
= (−1)∑i∈S σi . Let χ̂S

def
= 1

2L/2 χS. Then it follows that 〈χ̂S, χ̂T 〉= 1 if S = T and 0 otherwise. Let U be

the matrix whose columns are χ̂S; i.e., Uσ ,S
def
= χ̂S(σ). Then, from the orthonormality of the set {χ̂S}S⊆[L] it follows

that U is a unitary matrix; i.e., UU> = I. Moreover, it is well known that the eigenvectors of Qµ are columns of U.
This gives the following proposition.

Proposition 2.1. Qµ =UDU>, where Uσ ,S = χ̂S(σ) and D is a diagonal matrix with DS,S = (1−2µ)|S|.

8Note that the norm of this latter vector need not be 1 in `1 or `2 even if the `2 norm of w was one.
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2.1.3. The Matrix QµA. While both Qµ and A are symmetric their product is, in general, not. However, for
0 < µ ≤ 1/2, the matrix Qµ is positive semi-definite (PSD) and since A is diagonal and positive QµA is strictly
positive. Hence, the Perron Frobenius Theorem implies that its right eigenvector that corresponds to its largest
eigenvalue is strictly positive and unique. We record this observation here.

Proposition 2.2. For 0 < µ < 1/2 and diagonal A with strictly positive entries, the dominant right eigenvector, vµ

of QµA is strictly positive and unique. Moreover, for any probability vector m, limt→∞(QµA)tm = vµ .

Henceforth, for the sake of readability, we will denote Qµ by Q. The following lemma gives a characterization of
the largest eigenvalue of QA.

Lemma 2.3. If λ1 is the largest right eigenvalue of QA with eigenvector v such that ‖v‖1 = 1, then λ1 = ∑σ aσ vσ .

Hence, the largest eigenvalue measures the average fitness of the corresponding eigenvector. The proof is straight-
forward.

Proof. By definition, QAv = λ1v. Hence,

λ1 = λ1 ∑
σ

vσ = ∑
σ

∑
τ

Qτσ aτvτ = ∑
τ

aτvτ ∑
σ

Qτσ = ∑
τ

aτvτ .

�

2.2. Error Threshold in Finite and Bounded Fitness Landscapes. This section contains the proof of Theorem
1.2. It is a sequence of simple results and we break it down into three parts. The reader can refer to Section 1.6
to recall the flow of the proof. Section 2.2.1 is key to the following section and shows how to write the matrix A
in the Fourier basis. Section 2.2.2 then uses the results from the previous sections and Section 2.2.1 to establish
a near-tight bound on the largest eigenvalue of QµA. Section 2.2.3 argues about the dominant eigenvector of QµA
and establishes constraints on µ such that vµ comes close to the uniform distribution and, thus, proves the main
theorem. This section relies on the Fourier connection and requires estimating the `1 and `2 norm of vector the
vector UD1/2w, which is parallel to vµ and where w is the largest eigenvector in the Fourier domain.

2.2.1. A Structural Lemma. Let a be a (c,k)-finite and bounded fitness landscape where σ1, . . . ,σk are such that
1 < aσi ≤ c and for all σ 6∈ {σ1, . . . ,σk}, aσ = 1. Proposition 2.1 implies that the spectrum of QA is the same as
that of DU>AU, where U is the matrix whose columns are χ̂S; i.e., Uσ ,S = χ̂S(σ) and χ̂S =

1
2L/2 χS. Note that

(U>AU)S,T = ∑
σ

χ̂S(σ)aσ χ̂T (σ) =
1
2L

(
k

∑
i=1

χS∆T (σi)aσi + ∑
σ 6∈{σ1,...,σk}

χS∆T (σ)

)
.

If S = T, then

(U>AU)S,S =
1
2L ∑

σ

aσ =
2L− k

2L +
∑

k
i=1 aσi

2L = 1+
∑

k
i=1(aσi−1)

2L ≤ 1+
(c−1)k

2L .

Note that the above also implies that (U>AU)S,S ≥ 1. On the other hand, when S 6= T, (U>AU)S,T is

1
2L

(
k

∑
i=1

χS∆T (σi)aσi + ∑
σ 6∈{σ1,...,σT }

χS∆T (σ)

)
=

1
2L

(
k

∑
i=1

χS∆T (σi)aσi−
k

∑
i=1

χS∆T (σi)

)
=

∑
k
i=1 χS∆T (σi)(aσi−1)

2L .

Here we have used the fact that for any V 6= /0, ∑σ χV (σ) = 0. Hence, when S 6= T,∣∣∣(U>AU)S,T

∣∣∣≤ (c−1)k
2L .

We record this in the following lemma.

Lemma 2.4. For the matrix A corresponding to a (c,k)-finite and bounded landscape,

∀S⊆ [L], (U>AU)S,S = 1+
∑

k
i=1(aσi−1)

2L ≤ 1+
(c−1)k

2L
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and

∀S 6= T ⊆ [L], (U>AU)S,T =
∑

k
i=1 χS∆T (σi)(aσi−1)

2L and
∣∣∣(U>AU)S,T

∣∣∣≤ (c−1)k
2L .

2.2.2. Largest Eigenvalue. In this section we prove the following theorem.

Theorem 2.5. Let A correspond to a (c,k)-finite and bounded fitness landscape and 0 < µ ≤ 1/2, if λ1 is the largest
(right) eigenvalue of QA, then

max
{

1,
(1−2µ +2µ2)L

(1−µ)L +(c−1)(1−µ)L
}
≤ λ1 ≤ 1+(c−1)k(1−µ)L.

We will prove this theorem in two parts. First we establish an upper bound. In the process we upper bound the
distance of the largest eigenvector to the uniform vector; this will be useful for the error threshold calculation. We
consider the symmetric matrix D−1/2DU>AUD1/2 which has the same eigenvalues as DU>AU which, by Proposition
2.1, has the same spectrum as that of QA.

Lemma 2.6. Let w = (wS)S⊆[L] be a vector such that ∑S w2
S = 1. Then,

w>D1/2U>AUD1/2w≤ 1+(c−1)k(1−µ)L.

Proof. It follows from Lemma 2.4 that if w = (wS)S⊆[L], then

w>D1/2U>AUD1/2w = ∑
S

w2
S(1−2µ)|S|+

1
2L

k

∑
i=1

(aσi−1)∑
S,T

wSwT (1−2µ)
|S|/2(1−2µ)

|T |/2
χS(σi)χT (σi)

= ∑
S

w2
S +

1
2L

k

∑
i=1

(aσi−1)

(
∑
S

wSχS(σi)(1−2µ)
|S|/2

)2

≤ 1+
1
2L

k

∑
i=1

(aσi−1)(∑
S

w2
Sχ

2
S (σi))∑

S
(1−2µ)|S|

= 1+
1
2L

k

∑
i=1

(aσi−1)
L

∑
j=0

(
L
j

)
(1−2µ) j = 1+

1
2L

k

∑
i=1

(aσi−1)(1+1−2µ)L

= 1+
k

∑
i=1

(aσi−1)(1−µ)L ≤ 1+(c−1)k(1−µ)L.

�

Thus, we have the following corollary.

Corollary 2.7 (Upper Bound). For a (c,k)-finite and bounded fitness landscape, the largest eigenvalue of QA is at
most 1+(c−1)k(1−µ)L.

The following lemma gives a lower bound which is comparable to the upper bound except for the factor of k.

Lemma 2.8 (Lower Bound). For a (c,k)-finite and bounded fitness landscape, the largest eigenvalue of QA is at
least max{1, (1−2µ+2µ2)L

(1−µ)L +(c−1)(1−µ)L}.

Proof. First let w be a vector such that w /0 = 1 and wS = 0 for all S 6= /0. The Rayleigh quotient of this vector is 1.
This proves that the largest eigenvalue, which maximizes the Rayleigh quotient, has to be at least 1.

To show the other term in the lower bound, without loss of generality, let σ1 be the string such that aσ1 = c.

Consider the vector w such that wS
def
= χS(σ1)(1−2µ)|S|/2. The norm of this vector is ∑S(1−2µ)|S| = 2L(1−µ)L.

The corresponding quadratic form, again using Lemma 2.4, is

w>D1/2U>AUD1/2w = ∑
S
(1−2µ)2|S|+

1
2L

k

∑
i=1

(aσi−1)

(
∑
S

χS(σ1)(1−2µ)|S|χS(σi)

)2
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≥ (1+(1−2µ)2)L +
1
2L (c−1)(2−2µ)2L.

Dividing by the squared-norm of w, which is (2−2µ)L, we get the lemma by noticing that the largest eigenvector
is the maximizer of the Rayleigh quotient. �

Theorem 2.5 follows from Corollary 2.7 and 2.8.

2.2.3. The Error Threshold- Proof of Theorem 1.2. We now head towards establishing bounds on µ for the error
threshold and prove Theorem 1.2. First let us recall the formal relation between eigenvectors of QA and eigenvec-
tors of D1/2U>AUD1/2 : If w is an eigenvector of the latter with eigenvalue λ , then UD1/2w is an eigenvector of QA
with the same eigenvalue. This is because if w is such that D1/2U>AUD1/2w= λw, then UDU>AUD1/2w= λUD1/2w
which is the same as QA(UD1/2w) = λ (UD1/2w). If w0 = (1,0, . . . ,0), then UD1/2w0 = U2, which is the uniform
vector in `2 norm. If w1 is the largest eigenvector of D1/2U>AUD1/2, then, v def

= UD1/2w1 is the largest right eigen-
vector of QA. By Proposition 2.2, v is positive. We now calculate its `1 and `2 norm. Assume that ‖w1‖2 = 1.

Lemma 2.9. For any w such that UD1/2w is a non-negative vector,

‖UD1/2w‖1 = 2L/2w /0.

Proof. Since UD1/2w is a non-negative vector,

‖UD1/2w‖1 = ∑
σ

(UD1/2w)(σ) = ∑
σ

∑
S

1
2L/2

wS(1−2µ)
|S|/2

χS(σ) = ∑
S

1
2L/2

wS(1−2µ)
|S|/2

∑
σ

χS(σ) = 2L/2w /0.

Here we have used the fact that ∑σ χS(σ) = 0 if S 6= /0 and is 2L if S = /0. �

Corollary 2.10. Fix w such that ‖w‖2 = 1 and w /0 ≥ 1− γ. Then for v def
= UD1/2w, we have ‖v‖1 ≥ (1− γ)2L/2 and

‖v‖2 ≥ (1− γ).

Proof. The first claim follows from Lemma 2.9. To lower bound ‖v‖2, use Cauchy-Schwarz: 2L/2‖v‖2 ≥ ‖v‖1.
�

Lemma 2.11. Fix w such that ‖w‖2 = 1. Then for v def
= UD1/2w, ‖v‖2 ≤ 1

Proof. First note that ‖v‖2 = ‖UD1/2w‖2 =
√

w>Dw since U is unitary. To complete the proof note that w>Dw≤
w2

/0 +(1−2µ)(1−w2
/0)≤ 1. �

Thus, combining Corollary 2.10 and Lemma 2.11, we obtain the following corollary.

Corollary 2.12. Fix w such that ‖w‖2 = 1 and w /0 ≥ 1− γ. Let v def
= UD1/2w. Then

(1) 1− γ ≤ ‖v‖2 ≤ 1
(2) (1− γ)2L/2 ≤ ‖v‖1 ≤ 2L/2.

As a consequence, the vector v is almost parallel to the all 1 vector.

Lemma 2.13. Let v≥ 0 be such that ‖v‖2 ≤ 1 and (1− γ)2L/2 ≤ ‖v‖1 for a small enough constant γ > 0. Then

(1)
∥∥∥ v
‖v‖1
−U1

∥∥∥
2
≤ O

( √
γ

2L/2

)
and

(2)
∥∥∥ v
‖v‖1
−U1

∥∥∥
1
≤ O(

√
γ).

Proof.
∥∥∥ v
‖v‖1
−U1

∥∥∥2

2
= ∑σ

(
vσ

‖v‖1
− 1

2L

)2
= ∑σ

v2
σ

‖v‖2
1
− 2

2L ∑σ
vσ

‖v‖1
+ 1

2L . Since v≥ 0, ‖v‖1 = ∑σ vσ . Hence,∥∥∥∥ v
‖v‖1

−U1

∥∥∥∥2

2
=
‖v‖2

2

‖v‖2
1
− 1

2L ≤
1

(1− γ)22L −
1
2L = O

(
γ

2L

)
for small enough constant γ. It follows from Cauchy-Schwarz that∥∥∥∥ v

‖v‖1
−U1

∥∥∥∥
1
≤ 2L/2

∥∥∥∥ v
‖v‖1

−U1

∥∥∥∥
2
≤ O(

√
γ).

�
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Lemma 2.14. For δ > 0, suppose c,k,µ and L are such that (c−1)k(1−µ)L≤ δ . Let w1 be the largest eigenvector
of D1/2U>AUD1/2 with ‖w1‖2 = 1 and let w /0 be the mass of w1 on the coordinate corresponding to /0. Then,
w2

/0 ≥ 1− δ

2µ
.

Proof. We noted in Theorem 2.5 that λ1 ≥ 1. Hence,

1≤ λ1 = w>1 D1/2U>AUD1/2w1 ≤ w2
/0 +(1−2µ)(1−w2

/0)+ k(c−1)(1−µ)L ≤ 1−2µ +2µw2
/0 +δ .

This implies that w2
/0 ≥ 1− δ

2µ
.

�

Hence, we can show the following which completes one half of Theorem 1.2.

Corollary 2.15 (Upper Threshold). For a small enough constant ε > 0 and a (c,k)-finite and bounded landscape,
µ?(ε)≤ O

( 1
L ln ckL

ε2

)
.

Proof. Given ε, we pick γ
def
= O(ε2), and δ

def
= O(γµ) such that

(3) (c−1)k(1−µ)L ≤ δ .

Then, it follows from Lemma 2.14 that if w1 is the largest eigenvector of D1/2U>AUD1/2, then, w /0 ≥ w2
/0 ≥ 1− γ.

Hence, from Corollary 2.12 it follows that for vµ , which is by definition UD1/2w1, ‖vµ‖1 ≥ (1− γ)2L/2. Thus, by
part (2) of Lemma 2.13, it follows that ‖vµ −U1‖1 ≤ O(

√
γ) = O(ε). Finally, note that picking µ = O

( 1
L ln ckL

ε2

)
suffices to satisfy Equation (3). �

Lower threshold. Now we proceed to prove the other half of Theorem 1.2.

Lemma 2.16. If the largest eigenvalue λ1 of QA is at least 1+δ for some δ > 0 and v def
= vµ is the corresponding

vector with ‖v‖1 = 1, then ∑
k
i=1 vσi ≥ δ

(c−1) . As a consequence,

‖v−U1‖1 ≥
δ

(c−1)
− k

2L .

Proof. The largest eigenvalue λ1 = ∑σ aσ vσ . Hence,

1+δ ≤ λ1
Lemma 2.3

=
k

∑
i=1

aσivσi +1−
k

∑
i=1

vσi = 1+
k

∑
i=1

(aσi−1)vσi .

Hence, ∑
k
i=1 aσivσi ≥ δ . Thus, ∑

k
i=1 vσi ≥ δ

(c−1) . The claim about the `1 distance from U1 follows by noticing that v
is non-negative. �

Hence, we have the following corollary.

Corollary 2.17 (Lower Threshold). For a given ε and a (c,k)-finite and bounded landscape such that ck < 2Lε,

µ?(ε)≥Ω

(
1
L

ln(c−1)
)
.

Proof. Given ε > 0, we, rather slackly, we let δ
def
= (c−1)ε + (c−1)k

2L . Thus, if we pick µ such that δ = (c−1)(1−
µ)L−1, it follows from Lemma 2.16 and Lemma 2.8 that ‖vµ −U1‖1 ≥ ε. It is easy to check that the choice of µ

claimed in the corollary satisfies the constraint on δ . �

To complete the proof of Theorem 1.2, we mention that by a tighter analysis, we can improve the lower bound to
that claimed in the main theorem. We skip the tedious details in this version of the paper.
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